Answer:
The correct option is;
D. All the elements in families 1 and 2 can place all their shell electrons in the s sub-level
Explanation:
The elements in families 1 and 2 also called the group 1A and group 2A elements are known as the alkali and alkaline earth metals. The elements in the families 1 and 2 are also referred to as the s-block elements as they have their valence electrons which are 1 and 2 respectively, in the s-orbital or s sub-level
Due to their low ionization energy, and the ease with which they donate their valence electrons, elements of the families 1 and 2 are known to be very reactive, and are found in a combined state in nature.
Answer: 0.156 mol
Explanation:
To find the moles of 17.2 g K₂S, we need to know the molar mass to convert.

Mr. Jones's prescription calls for 1.04 tablets per day. Based on this information, how many tablets should Mr. Jones take per day? a) 1.25 O b) 1.5 c) 1 O d) 2
Answer: Temperature in constant pressure is 286 K
Explanation: If pressure remains constant, then V/T = constant.
V1 = 350 ml and T1 = 200 K and V2 = 500 ml. V1/T1 = V2/T2
and T2 = T1· V2 / V1 = 200 K · 500 ml / 300 ml = 285,7 K
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.