Answer:
In the third step of the citric acid cycle, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released.
Explanation:
In the first step of citric acid cycle, acetylCoA combines with a four-carbon molecule, oxaloacetate, forming a six-carbon molecule, citrate.
In the second step, the citrate in the presence of enzyme anicotase is converted into isocitrate.
<u>In the third step, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released leaving behind one five-carbon molecule called as α-ketoglutarate. During this step, NAD⁺ is reduced to form NADH. </u>
<u>This is first round of the citric acid cycle that could possibly release a carbon atom originating from this acetyl CoA.</u>
On series of reaction, another carbon dioxide molecule also being relased and oxaloacetate is regenerated again.
TLDR: The energy was being used simply to heat the substance up.
Whenever something melts, it performs what is called a "phase transition", where the state of matter moves from one thing to something else. You can see this in your iced drink at lunch; as the ice in the cup of liquid heats up, it reaches a point where it will eventually "change phase", or melt. The same can be achieved if you heat up that water enough, like if you're cooking; when you boil eggs, the water has so much thermal energy it can "change phase" and become a gas!
However, water doesn't randomly become a boiling gas, it has to heat up for a while before it reaches that temperature. For a real-life example, the next time you cook something, hold you hand above the water before it starts boiling. You'll see that that water has quite a high temperature despite not boiling.
There's a lot of more complex chemistry to describe this phenomena, such as the relationship between the temperature, pressure, and what is called the "vapor pressure" of a liquid when describing phase changes, but for now just focus on the heating effect. When ice melts, it doesn't seem like its heating up, but it is. The ice absorbs energy from its surroundings (the warmer water), thus heating up the ice and cooling down the water. Similarly, the bunsen burner serves to heat up things in the lab, so before the solid melts in this case it was simply heating up the solid to the point that it <u>could</u> melt.
Hope this helps!
Answer:
Everything that has mass and takes up space is matter. Every day, you find something usual that either does't have mass or else don't take up space. Those things are non-matter. Basically, any type of energy or any abstract concept is an example of something that does not have matter.
Explanation:
Fluorine in compounds is always assigned an oxidation number of -1