1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
3 years ago
5

PLEASE HELP!! I’ll mark brainliest!! Image of the figure will be attached. 2.5 2.5 and 5 are the numbers! To get brainliest plea

se leave work attached or explanation!!! Part c
Jackson has a second cube identical to the first. He cuts off the triangular prism as shown below and throws
it away.
What is the volume, in cubic centimeters, of the remaining solid? Show or explain all your work
Work:

Mathematics
2 answers:
Harman [31]3 years ago
6 0

Answer:

\Large \boxed{\sf 109.375 \ cm^3}

Step-by-step explanation:

Volume of remaining solid = Volume of cube - Volume of triangular prism

Volume of cube:

5^3=125

Volume of triangular prism:

2.5 \times 2.5 \times 0.5 \times 5=15.625

Volume of remaining solid:

125-15.625=109.375

balandron [24]3 years ago
5 0

Answer:

  • 109.375 cm³

Step-by-step explanation:

<u>The volume of the cube is:</u>

  • V = a³ = 5³ = 125 cm³

<u>The volume of the cut prism:</u>

  • V = Bh, B- area of the base, h- height

The base is a right triangle with legs of 2.5 each.

<u>The volume is:</u>

  • V = 1/2*2.5*2.5*5 = 15.625 cm³

<u>Required volume of the solid is the difference of the above volumes:</u>

  • 125 - 15.625 = 109.375 cm³
You might be interested in
An architect plans to make a drawing of the room of a house. The segment LM represents the ceiling of the room. He wants to cons
morpeh [17]
I believe the answer is c im am stuck on the same problem do you know the answer?<span />
8 0
3 years ago
Read 2 more answers
can anybody help me with this problem 11/6 and 3 1/3 and i need to figure out if one is greater than or less than or equal to th
Anestetic [448]
11/6 is less than. 6 only goes into 11 once,, so it'd be 11/6
3 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
Danelle and Jim Baraja have obtained a $70,000 mortgage loan at an annual interest rate of 6.00 for years. What is the monthly p
musickatia [10]
<span>Total Paid:<span>$147,060.36
</span></span>Monthly payment $408.50
<span>Total Interest Paid <span>$77,060.36
</span></span>Hope I helped!!
5 0
3 years ago
Please help me. .....
wlad13 [49]

Answer:

24 pounds

Step-by-step explanation:

Step 1: Find out how many pens he bought

12 pens per pack

Charles bought 60 packs

60 packs x 12 pens = 720 pens

Step 2: Find out how much Charles spent

2.80 per pack

Charles bought 60 packs

60 x 2.80 = 168 pounds

Step 3: Find out how many pens Charles sold

Charles sold 2/3 of his pens

2/3 x 720 = 480

Step 4: Find out how manypens he sold

Charles sold the pens for 40p

40p x 480 = 19200p

Step 5: Convert pences to pounds

19200p = 192 pounds

Step 6: Find the profit

192 - 168 = 24 pounds

Step 7: Therefore statement

Therefore he mad 24 pounds of profit

6 0
3 years ago
Other questions:
  • Calculate the total interest paid on a 30-year, 3.9% fixed-rate $200,000 mortgage loan.
    7·1 answer
  • I don't understand :/
    10·2 answers
  • The sum of two numbers is 119. If 4 times the smaller number is subtracted from the larger number the result is nine. Find a two
    6·1 answer
  • 900 cm/h = cm/min plz helpppp
    13·2 answers
  • The time between breakdowns of an alarm system is exponentially distributed with mean 10 days. What is the probability that ther
    7·1 answer
  • 5/x+3 take away 1/x-2 equals to 1. solve two possible answers for x
    13·1 answer
  • These liness pass through the same point
    12·1 answer
  • Sara is considering charging her electric car. If she goes to the charging station on the following map, she will have to drive
    14·2 answers
  • The endpoints of a side of rectangle ABCD in the coordinate plane are at A (1,7) and
    8·1 answer
  • Parabola 4x^2+24x-10
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!