There are two steps to this problem. The first step is to make an equation for the cost of each company. The cost of each one involves 2 variables. However, we can ignore the number of days since the question asks for per day.
CostA = 90 + .40(miles)
CostB = 30 + .70(miles)
We want to know when A is a better deal or when A costs less. That is when CostA < CostB. We can then substitute the right sides of our equations into the inequality. This will give:
90 + .40(miles) < 30 + .70(miles) This is where we will now begin to solve for the number of miles.
-30 -30 Subtract 30 from both sides.
60 + .4(miles) < .7(miles) Simplify
-.4(miles) -.4(miles) Subtract .4(miles) from both sides
60 < .3(miles) Simplify
/.3 /.3 Divide both sides by .3
200 < miles Simplify
So for A to cost less the number of miles must be greater than 200.
You would divide 24 by 5 so the length would end up being: 4.8 in
Hope it helps!
Answer:

Step-by-step explanation:
The probability of success (getting heads) on one roll DOESNT affect other rolls, so we need to find probability of getting a head in a roll.
Probability is defined as the number of favorable outcomes divided by the total number of outcomes.
<em>Here, favorable outcome is getting a head. So, on one roll, getting a head is 1. Also, the total number of outcomes is either a head or a tail. So total number of outcomes is 2.</em>
Thus,
P(Heads) = 1/2