Answer:
The answer is 7776!
Step-by-step explanation:
Use PEMDAS
PEMDAS:
Parentheses
Exponents,
Multiplication
Division (from left to right),
Addition and
Subtraction (from left to right).
![\bf f(x)=(x-6)e^{-3x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}=1\cdot e^{-3x}+(x-6)-3e^{-3x}\implies \cfrac{dy}{dx}=e^{-3x}[1-3(x-6)] \\\\\\ \cfrac{dy}{dx}=e^{-3x}(19-3x)\implies \cfrac{dy}{dx}=\cfrac{19-3x}{e^{3x}}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%28x-6%29e%5E%7B-3x%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot%20e%5E%7B-3x%7D%2B%28x-6%29-3e%5E%7B-3x%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%5B1-3%28x-6%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%2819-3x%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B19-3x%7D%7Be%5E%7B3x%7D%7D)
set the derivative to 0, solve for "x" to get any critical points
keep in mind, setting the denominator to 0, also gives us critical points, however, in this case, the denominator will never be 0, so... no critical points from there
there's only 1 critical point anyway, and do a first-derivative test on it, check a number before it and after it, to see what sign the derivative has, and thus, whether the graph is going up or down, to check for any extrema
No the the the the they’ve thanks
Answer:
This question answer is attached in the attachment,
Step-by-step explanation:
Y= -1/3x + 4
This would make the equation in slope intercept form