1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
13

HURRY!!!! NO SPAM!!!! Identify the area of the trapezoid.

Mathematics
2 answers:
saveliy_v [14]3 years ago
8 0

Answer:

area =  >

a+b/2*h

Here,

a = 12xcm

b= 15xcm

h= 7cm

=  >

(12+15)xcm/2*7

=27xcm*3.5

<h2>=94.5x cm²</h2>

Virty [35]3 years ago
6 0

Answer:

94.5

Step-by-step explanation:

You might be interested in
Write the equations of three distinct lines that have the same y-intercept,-1.
guajiro [1.7K]
Three possible answers are:
y = 2x-1
y = 5x-1
y = -3x-1

All of them have the same y intercept of -1. The slopes are the only thing that differ.

Any linear equation can be written in the form y = mx+b where
m = slope
b = y intercept
7 0
4 years ago
Simplify this expression<br> 2(3x -2 + 2y) - (2 + 4x + y)
luda_lava [24]

Answer:

2 x  +  3y −  6

Step-by-step explanation:

If you simplify you should get 2 x  +  3y −  6

4 0
3 years ago
Read 2 more answers
Given: ∆PQR, m∠R = 90° m∠PQR = 75° M ∈ PR , MP = 18 m∠MQR = 60° Find: RQ
tensa zangetsu [6.8K]

Answer:    RQ= 8.99 ( approx)

Step-by-step explanation:

Let MR= x

Since, In triangle, PRQ, tan 75°= \frac{18+x}{RQ}

⇒ RQ=  \frac{18+x}{tan 75^{\circ}}

Now, In triangle MRQ,

tan 60°= \frac{18+x}{RQ}

⇒ RQ=  \frac{x}{tan 60^{\circ}}

On equating both values of RQ,

\frac{18+x}{tan 75^{\circ}}=\frac{x}{tan 60^{\circ}}

⇒\frac{18+x}{x}=\frac{tan 75^{\circ}}{tan 60^{\circ}}

⇒\frac{18+x}{x}=\frac{tan 75^{\circ}}{tan 60^{\circ}}

⇒\frac{18+x}{x}=2.15470053838

⇒18=2.15470053838x-x

⇒x=15.5884572681≈15.60

Thus RQ=8.99999999999≈8.99


6 0
3 years ago
A ½in diameter rod of 5in length is being considered as part of a mechanical linkagein which it can experience a tensile loading
Evgesh-ka [11]

Answer:

a. Maximum Load = Force = 27085.09 N

b. Maximum Energy = 3.440 Joules

Step-by-step explanation:

Given

Rod diameter = ½in = 0.5in

Length = 5in

Young's modulus = 15.5Msi

By applying the 0.2% offset rule,

The maximum load the rod can hold before it gets to breaking point is given as follows by taking the strain as 0.2%

Young Modulus = Stress/Strain ------- Make Stress the Subject of Formula

Stress = Strain * Young Modulus

Stress = 0.2% * 15.5

Stress = 0.002 * 15.5

Stress = 0.031Msi

Calculating the area of the rod

Area = πr² or πd²/4

Area, A = 22/7 * 0.5^4 / 4

A = 22/7 * 0.25 / 4

A = 5.5/28

A = 0.1964in²

The maximum load that the rod would take before it starts to permanently elongate is given by

Force = Stress * Atea

Force = 0.031Msi * 0.1964in²

Force = 31Ksi * 0.1964in²

Force = 6.089Ksi in²

Force = 6.089 * 1000lbf

Force = 6089 lbf

1 lbf = 4.4482N

So, Force = 6089 * 4.4482N

Force = 27085.09 N

b.

Using Strain to Energy Formula

U = V×σ²/2·E

Where V = Volume

V = Length * Area

V = 5 in * 0.1964in²

V = 0.982in³

σ = Stress = 0.031Msi

= 0.031 * 1000Ksi

= 31Ksi

= 31 * 1000psi

= 31000psi

E = Young Modulus = 15.5Msi

= 15.5 * 1000Ksi

= 15.5 * 1000 * 1000psi

= 15500000psi

So,

Energy = 0.982 * 31000²/ ( 2 * 15500000)

Energy = 943,702,000/31000000

Energy = 30.442in³psi

------- Converted to ftlbf

Energy = 2.537 ftlbf

-------- Converted to Joules

Energy = 3.440 Joules

7 0
4 years ago
Strain-displacement relationship) Consider a unit cube of a solid occupying the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 After loa
Anastasy [175]

Answer:

please see answers are as in the explanation.

Step-by-step explanation:

As from the data of complete question,

0\leq x\leq 1\\0\leq y\leq 1\\0\leq z\leq 1\\u= \alpha x\\v=\beta y\\w=0

The question also has 3 parts given as

<em>Part a: Sketch the deformed shape for α=0.03, β=-0.01 .</em>

Solution

As w is 0 so the deflection is only in the x and y plane and thus can be sketched in xy plane.

the new points are calculated as follows

Point A(x=0,y=0)

Point A'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point A'(0+<em>(0.03)</em><em>(0),0+</em><em>(-0.01)</em><em>(0))</em>

Point A'(0<em>,0)</em>

Point B(x=1,y=0)

Point B'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point B'(1+<em>(0.03)</em><em>(1),0+</em><em>(-0.01)</em><em>(0))</em>

Point <em>B</em>'(1.03<em>,0)</em>

Point C(x=1,y=1)

Point C'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point C'(1+<em>(0.03)</em><em>(1),1+</em><em>(-0.01)</em><em>(1))</em>

Point <em>C</em>'(1.03<em>,0.99)</em>

Point D(x=0,y=1)

Point D'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point D'(0+<em>(0.03)</em><em>(0),1+</em><em>(-0.01)</em><em>(1))</em>

Point <em>D</em>'(0<em>,0.99)</em>

So the new points are A'(0,0), B'(1.03,0), C'(1.03,0.99) and D'(0,0.99)

The plot is attached with the solution.

<em>Part b: Calculate the six strain components.</em>

Solution

Normal Strain Components

                             \epsilon_{xx}=\frac{\partial u}{\partial x}=\frac{\partial (\alpha x)}{\partial x}=\alpha =0.03\\\epsilon_{yy}=\frac{\partial v}{\partial y}=\frac{\partial ( \beta y)}{\partial y}=\beta =-0.01\\\epsilon_{zz}=\frac{\partial w}{\partial z}=\frac{\partial (0)}{\partial z}=0\\

Shear Strain Components

                             \gamma_{xy}=\gamma_{yx}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0\\\gamma_{xz}=\gamma_{zx}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=0\\\gamma_{yz}=\gamma_{zy}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}=0

Part c: <em>Find the volume change</em>

<em></em>\Delta V=(1.03 \times 0.99 \times 1)-(1 \times 1 \times 1)\\\Delta V=(1.0197)-(1)\\\Delta V=0.0197\\<em></em>

<em>Also the change in volume is 0.0197</em>

For the unit cube, the change in terms of strains is given as

             \Delta V={V_0}[(1+\epsilon_{xx})]\times[(1+\epsilon_{yy})]\times [(1+\epsilon_{zz})]-[1 \times 1 \times 1]\\\Delta V={V_0}[1+\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}+\epsilon_{xx}\epsilon_{yy}+\epsilon_{xx}\epsilon_{zz}+\epsilon_{yy}\epsilon_{zz}+\epsilon_{xx}\epsilon_{yy}\epsilon_{zz}-1]\\\Delta V={V_0}[\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}]\\

As the strain values are small second and higher order values are ignored so

                                      \Delta V\approx {V_0}[\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}]\\ \Delta V\approx [\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}]\\

As the initial volume of cube is unitary so this result can be proved.

5 0
3 years ago
Other questions:
  • HELP WITH GEOMETRY!!
    8·2 answers
  • Help with this plz what is the slope and the y intercept
    5·2 answers
  • The complex numbers w
    5·1 answer
  • A painting is hung on a wall as shown in the diagram below. The painting measures 3 feet by 2 feet. What is the area of the wall
    7·1 answer
  • WILL GIVE BRAINLIEST PLEASE HURRY!!!<br><br> What is the slope of the line in the graph?
    15·1 answer
  • Solve the following system of equations -7x+2y=9, -8x+9y=17
    8·2 answers
  • HELP Luna observed that in the last 12 issues of Rise Over Run Weekly, 384 of the 960 pages contained an advertisement.
    7·2 answers
  • Find the value of x and y
    11·1 answer
  • Plsss help asap plsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
    14·1 answer
  • What is the solution of the equation 4.5+m=10
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!