1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
5

Does anybody know how to do this stuff

Mathematics
1 answer:
My name is Ann [436]3 years ago
5 0

Answer:

what grade?

Step-by-step explanation:

You might be interested in
Unit test answers grade 4
Ksenya-84 [330]

Answer:

4th grade questions?

I can easily help you with those.

What are your questions?

5 0
3 years ago
Read 2 more answers
What is the true solution to the equation below?
Marina CMI [18]

Answer:

The solution is:

  • x=4

Step-by-step explanation:

Considering the expression

lne^{lnx}+lne^{lnx}^{^2}=2ln8

\ln \left(e^{\ln \left(x\right)}\right)+\ln \left(e^{\ln \left(x\right)\cdot \:2}\right)=2\ln \left(8\right)

\mathrm{Apply\:log\:rule}:\quad \:log_a\left(a^b\right)=b

\ln \left(e^{\ln \left(x\right)}\right)=\ln \left(x\right),\:\space\ln \left(e^{\ln \left(x\right)2}\right)=\ln \left(x\right)2

\ln \left(x\right)+\ln \left(x\right)\cdot \:2=2\ln \left(8\right)

\mathrm{Add\:similar\:elements:}\:\ln \left(x\right)+2\ln \left(x\right)=3\ln \left(x\right)

3\ln \left(x\right)=2\ln \left(8\right)

\mathrm{Divide\:both\:sides\:by\:}3

\frac{3\ln \left(x\right)}{3}=\frac{2\ln \left(8\right)}{3}

\ln \left(x\right)=\frac{2\ln \left(8\right)}{3}.....A

Solving the right side of the equation A.

\frac{2\ln \left(8\right)}{3}

As

\ln \left(8\right):\quad 3\ln \left(2\right)

Because

\ln \left(8\right)

\mathrm{Rewrite\:}8\mathrm{\:in\:power-base\:form:}\quad 8=2^3

⇒ \ln \left(2^3\right)

\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

\ln \left(2^3\right)=3\ln \left(2\right)

So

\frac{2\ln \left(8\right)}{3}=\frac{2\cdot \:3\ln \left(2\right)}{3}

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:3=6

          =\frac{6\ln \left(2\right)}{3}

\mathrm{Divide\:the\:numbers:}\:\frac{6}{3}=2

          =2\ln \left(2\right)

So, equation A becomes

\ln \left(x\right)=2\ln \left(2\right)

\mathrm{Apply\:log\:rule}:\quad \:a\log _c\left(b\right)=\log _c\left(b^a\right)

         =\ln \left(2^2\right)

         =\ln \left(4\right)

\ln \left(x\right)=\ln \left(4\right)

\mathrm{Apply\:log\:rule:\:\:If}\:\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\:\mathrm{then}\:f\left(x\right)=g\left(x\right)          

x=4

Therefore, the solution is

  • x=4
6 0
3 years ago
Read 2 more answers
(4p-4)+(-7p-7)<br> I need HELP ON THIS PLEASE FAST!!
yuradex [85]

Answer:

The correct answer is number 2

-3p - 11

I'm 1000000% sure...

8 0
3 years ago
Ravi is putting money into a checking account. Let y represent the total amount of money in the account (in dollars). Let x repr
nexus9112 [7]

Answer:

1. The change per week is $40 as it is the coefficient.

2. The starting amount is $550 as it is the constant.

8 0
2 years ago
Given the function f(x)=2x-1<br> Evaluate: <br>a) 2f(x) <br> b) f(2x)​
Dmitrij [34]

Answer:

a) 2f(x) = 4x - 2

b) f(2x) = 4x - 1

Explanation:

Given function:

  • f(x) = 2x - 1

a) 2f(x)

2f(x) = 2(2x - 1)

       = 4x - 2

b) f(2x)

f(2x) = 2(2x) - 1

       = 4x - 1

3 0
2 years ago
Other questions:
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    12·1 answer
  • A triangle with sides 7.5, 10, and 12.5 is a right triangle.
    12·1 answer
  • AB has coordinates A(-15,5) and B(0-10). Find the coordinates of A' B'
    11·1 answer
  • Debbie and her friend went to the mall. Together, they had $40 to spend. They each bought a shirt that costs $12 and bought some
    8·1 answer
  • Sketch the region enclosed by the lines X=0, X=6, Y=2, and Y=6.
    8·2 answers
  • Translate the following: <br> Two times the difference between a number and<br> 7 is thirty four
    14·1 answer
  • Help!’!!!!!!!!! And thanksss
    12·2 answers
  • Hi plz help . (6 to the power -1 + (3—2) to power -1 whole power -1​
    12·1 answer
  • Someone please help a) Solve the problem correctly by completing the square.
    14·2 answers
  • Name the angle in three different ways
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!