Answer:
13.85 kJ/°C
-14.89 kJ/g
Explanation:
<em>At constant volume, the heat of combustion of a particular compound, compound A, is − 3039.0 kJ/mol. When 1.697 g of compound A (molar mass = 101.67 g/mol) is burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 3.661 °C. What is the heat capacity (calorimeter constant) of the calorimeter? </em>
<em />
The heat of combustion of A is − 3039.0 kJ/mol and its molar mass is 101.67 g/mol. The heat released by the combustion of 1.697g of A is:

According to the law of conservation of energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qcomb + Qcal = 0
Qcal = -Qcomb = -(-50.72 kJ) = 50.72 kJ
The heat capacity (C) of the calorimeter can be calculated using the following expression.
Qcal = C . ΔT
where,
ΔT is the change in the temperature
Qcal = C . ΔT
50.72 kJ = C . 3.661 °C
C = 13.85 kJ/°C
<em>Suppose a 3.767 g sample of a second compound, compound B, is combusted in the same calorimeter, and the temperature rises from 23.23°C to 27.28 ∘ C. What is the heat of combustion per gram of compound B?</em>
Qcomb = -Qcal = -C . ΔT = - (13.85 kJ/°C) . (27.28°C - 23.23°C) = -56.09 kJ
The heat of combustion per gram of B is:

Answer:
Zero to the power of zero, denoted by 00, is a mathematical expression with no agreed-upon value. The most common possibilities are 1 or leaving the expression undefined, with justifications existing for each, depending on context
Explanation:
Answer:
HCN < HOCl < HF
Explanation:
The larger the Kₐ value, the stronger the acid.
6.2 × 10⁻¹⁰ < 4.0 × 10⁻⁸ < 6.3 × 10⁻⁴
HCN < HOCl < HF
weakest stronger strongest
Answer: There are 78.26 mL of a 0.0023M strontium hydroxide solution are needed to completely react 15.0 mL of 0.012M hydrochloric acid.
Explanation:
Given:
= 0.0023 M,
= ?
= 15.0 mL,
= 0.012 M
Formula used to calculate volume of strontium hydroxide solution is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that there are 78.26 mL of a 0.0023M strontium hydroxide solution are needed to completely react 15.0 mL of 0.012M hydrochloric acid.