Answer:
the first option, tasting a pasta sauce after adding a new ingredient.
Explanation:
tasting a pasta sauce after adding a new ingredient is not an observation because there is no qualitative or quantitative data to be taken from that experience.
The enthalpy change for an exothermic reaction is negative because heat is being released, so that takes out two of the responses. Since energy is being released into the surroundings due to the exothermic reaction, the potential energy of the products is lower than that of the reactants. Energy is being put in to make the reaction occur, but then that energy is all being released into the surroundings thus a lower potential energy level for the products
Answer:
A) An ionic bond is much stronger than most covalent bonds.
Explanation:
D) Ionic compounds have high melting points causing them to be solid at room temperature, and conduct electricity when dissolved in water. Covalent compounds have low melting points and many are liquids or gases at room temperature.
C) An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms.
A) Covalent bonds are stronger if you compare with ionic molecules, because their molecular orbital overlap is bigger. However, ionic molecules form lattices, thus the energy to break this lattice bond is stronger hence the ionic bond is stronger.
The answer to your question is nitrogen dioxide
Albert Einstein was responsible for the general theory of relativity. The general theory of relativity explains that what we recognize as the force of gravity in fact arises from the curvature of space and time.
In the latency of matter and energy it can evolve, stretch and morph. Forming ridges, valleys and mountains that cause bodies moving through it to curve and zig-zag.