Answer:
Explanation:
a ) V = 3 cos(0.5t)
differentiating with respect to t
dv /dt = -3 x .5 sin0.5t
= -1.5 sin0.5t.
acceleration = - 1.5 sin 0.5t
when t = 3 s
acceleration = - 1.5 sin 1.5
= - 1.496 ms⁻²
v = 3 cos.5t
b ) dx/dt = 3 cos 0.5 t
dx = 3 cos 0.5 t dt
integrating on both sides
x = 3 sin .5t / .5
x = 6 sin0.5t
At t = 2 s
x = 6 sin 1
x = 5.05 m
Answer:
Momentum is given by
p
=
m
v
. Impulse is the change of momentum,
I
=
Δ
p
and is also equal to force times time:
I
=
F
t
. Rearranging,
F
=
I
t
=
Δ
p
t
=
0
−
20
,
000
5
=
−
4000
N
.
Explanation:
Momentum before the collision is
p
=
m
v
=
2000
⋅
10
=
20
,
000
k
g
m
s
−
1
.
Assuming the truck comes to a complete halt, the momentum after the collision is
0
k
g
m
s
−
1
.
The change in momentum,
Δ
p
, is initial minus final
→
0
−
20
,
000
=
−
20
,
000
This is called the impulse:
I
=
Δ
p
. Impulse is also equal (check the units) to force times time:
I
=
F
t
.
We can rearrange this expression to make
F
the subject:
F
=
I
t
=
Δ
p
t
=
−
20
,
000
5
=
−
4000
N
The negative sign just means the force acting is in the opposite direction to the initial momentum.
(This will be the average force acting during the collision: collisions are chaotic so the force is unlikely to be constant.)
Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.
Answer:
c
Explanation:
When a satellite is orbiting the earth , a constant force is being applied on it which means it must has acceleration. Also the direction of satellite is always being changed when it is orbitting to there is always change in the velocity vector which means acceleration.
You can view in the attached diagram to understand how the velocity is being changed.