1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
2 years ago
5

The meaning of the graph suggested by the graph line is

Mathematics
2 answers:
Vadim26 [7]2 years ago
4 0

Answer:

C

Step-by-step explanation:

distance is directly related to time because the line is linear

madam [21]2 years ago
3 0

Answer:c

Step-by-step explanation:

.

You might be interested in
What are the factors of 21?
skelet666 [1.2K]
The answer will be 1,3,7
8 0
3 years ago
Help me ASAP plsssssssssssssssssssssssssssssssssss
SCORPION-xisa [38]
The answer is 7 because it goes 10th 100th and the thirty one is thousands
4 0
3 years ago
Help me, plsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
I am Lyosha [343]

Answer:

70/29 or 2 12/29

Step-by-step explanation:

5 0
2 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Tm=gl and md=ls What additional information is necessary to show that by SSS
Karo-lina-s [1.5K]
Since the problem is to prove that the two triangles are congruent by applying SSS (side -side -side) congruence theorem, the missing or the additional information that can be shown in the solution is the third side of both triangles must be also equal and congruent. Since in SSS theorem, all sides of a given triangle must be congruent to the opposite three sides of the second triangle.
7 0
3 years ago
Other questions:
  • Confused, thanks.
    15·1 answer
  • A group of 8 students apply for MBA program at CBA, CSULB. According to the historical data, probability of admittance at MBA pr
    7·1 answer
  • If 400 dpi equals 3.6 and 800 equals 1.8. What does 1000 dpi equal to?
    8·1 answer
  • 3(3x+4+1x) simplified
    8·2 answers
  • A sign says that the price marked on all music equipment is 35% off the original price. You want to buy an electric guitar for t
    13·1 answer
  • 2.5(a + 4) + 0.5a = 12.4
    10·1 answer
  • A football team had a loss of 6 yards, a gain of 10 yards, and a loss of 5 yards. What was the teams total yardage?
    12·1 answer
  • The 1-mile race is equal to how many feet?
    7·1 answer
  • Henry bought 3 sets of pencils. After he bought the pencils, his account balance showed a change of -$30.63. What would have bee
    12·1 answer
  • What is a perfect 5 pointed star
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!