1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
3 years ago
6

A store is having a sale during which all outdoor furniture is 45% off the original price, p. If the post-sale price of an outdo

or furniture set can be calculated using the expression p – 0.45p, which expression also represents the price?
A) 0.45p

B) 0.55p

C) 1 – 0.45p

D) p – 0.55⇒Δ
Mathematics
1 answer:
Leokris [45]3 years ago
7 0

Answer:

p*0.55

Step-by-step explanation:

Step one:

given data

let the original price  be p

let the discounted sale be A

45% of the original price is given as

Step two:

A= p-0.45p

factor p out

A=p(1-0.45)

A= p*0.55

You might be interested in
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Esther is pregnant and preparing for the birth of her first baby. In college, she ran up a large credit card bill and is still t
Yuki888 [10]

Answer:use money she planned to spend on her medical bills to pay her credit card

5 0
3 years ago
The Cartesian coordinates of a point are given. (a) (−5, 5) (i) Find polar coordinates (r, θ) of the point, where r &gt; 0 and 0
Alex73 [517]

Answer:

a)

(i) The coordinates of the point in polar form is (5√2 , 7π/4)

(ii) The coordinates of the point in polar form is (-5√2 , 3π/4)

b)

(i) The coordinates of the point in polar form is (6 , π/3)

(ii) The coordinates of the point in polar form is (-6 , 4π/3)

Step-by-step explanation:

* Lets study the meaning of polar form

- To convert from Cartesian Coordinates (x,y) to Polar Coordinates (r,θ):

1. r = √( x2 + y2 )

2. θ = tan^-1 (y/x)

- In Cartesian coordinates there is exactly one set of coordinates for any

 given point

- In polar coordinates there is literally an infinite number of coordinates

 for a given point

- Example:

- The following four points are all coordinates for the same point.

# (5 , π/3) ⇒ 1st quadrant

# (5 , −5π/3) ⇒ 4th quadrant

# (−5 , 4π/3) ⇒ 3rd quadrant

# (−5 , −2π/3) ⇒ 2nd quadrant

- So we can find the points in polar form by using these rules:

 [r , θ + 2πn] , [−r , θ + (2n + 1) π] , where n is any integer

 (more than 1 turn)

* Lets solve the problem

(a)

∵ The point in the Cartesian plane is (-5 , 5)

∵ r = √x² + y²

∴ r = √[(5)² + (-5)²] = √[25 + 25] = √50 = ±5√2

∵ Ф = tan^-1 (y/x)

∴ Ф = tan^-1 (5/-5) = tan^-1 (-1)

- Tan is negative in the second and fourth quadrant

∵ 0 ≤ Ф < 2π

∴ Ф = 2π - tan^-1(1) ⇒ in fourth quadrant r > 0

∴ Ф = 2π - π/4 = 7π/4

OR

∴ Ф = π - tan^-1(1) ⇒ in second quadrant r < 0

∴ Ф = π - π/4 = 3π/4

(i) ∵ r > 0

∴ r = 5√2

∴ Ф = 7π/4 ⇒ 4th quadrant

∴ The coordinates of the point in polar form is (5√2 , 7π/4)

(ii) r < 0

∴ r = -5√2

∵ Ф = 3π/4 ⇒ 2nd quadrant

∴ The coordinates of the point in polar form is (-5√2 , 3π/4)

(b)

∵ The point in the Cartesian plane is (3 , 3√3)

∵ r = √x² + y²

∴ r = √[(3)² + (3√3)²] = √[9 + 27] = √36 = ±6

∵ Ф = tan^-1 (y/x)

∴ Ф = tan^-1 (3√3/3) = tan^-1 (√3)

- Tan is positive in the first and third quadrant

∵ 0 ≤ Ф < 2π

∴ Ф = tan^-1 (√3) ⇒ in first quadrant r > 0

∴ Ф = π/3

OR

∴ Ф = π + tan^-1 (√3) ⇒ in third quadrant r < 0

∴ Ф = π + π/3 = 4π/3

(i) ∵ r > 0

∴ r = 6

∴ Ф = π/3 ⇒ 1st quadrant

∴ The coordinates of the point in polar form is (6 , π/3)

(ii) r < 0

∴ r = -6

∵ Ф = 4π/3 ⇒ 3rd quadrant

∴ The coordinates of the point in polar form is (-6 , 4π/3)

6 0
3 years ago
(1) I am playing Guess Who with my son, the goal of which is to guess which card (which person's face)
Fiesta28 [93]

Answer:

Fun? i like the game we play in school with each other.

Step-by-step explanation:

3 0
2 years ago
Please help ASAP I also need the answer for part b also
PilotLPTM [1.2K]
Depending on how large the figure actually is, if it is specifying that on that specific paper what to use to measure it, use a ruler also for part b a possible dimension could be 4 cm x 8cm
8 0
3 years ago
Other questions:
  • The order of the ______________ in the congruence statement for two congruent triangles tells you the correspondence.
    7·2 answers
  • How to find the common denominator of two numbers?
    8·1 answer
  • How do i do this? Its confusing
    14·1 answer
  • Identify the type of observational study​ (cross-sectional, retrospective, or​ prospective) described below. A research company
    9·1 answer
  • Sasha went shopping and decided to purchase a set of bracelets for 5% off the regular price ($44.00). If Sasha buys the bracelet
    10·1 answer
  • HELPPPPPPPPPPPPPP! I don’t know this.
    5·1 answer
  • A 24-1b turkey costs $21.36. Assuming the costs are proportional, how much would a 17.5 lb turkey cost?
    15·2 answers
  • OTHER ONE WASNT 50. 50 POINTS AND BRAINLIST IF GET RIGHT
    13·1 answer
  • How do i do this pls help me
    15·1 answer
  • Please help!!!!! geometry
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!