Answer:
755 gram lighter
Step-by-step explanation:
Convert 1.1kg into gram by multiplying it with 1000
1.1 x 1000= 1100 and we take this amount and subtract it with 345g
1100-345= 755g
Answer:
The smallest possible perimeter of the triangle, rounded to the nearest tenth is 72.4 in
Step-by-step explanation:
The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side
Let
x ------> the length of the remaining side
Applying the triangle inequality theorem
1) x+x > 30
2x > 30
x > 15 in
The perimeter is equal to
P=30+2x
<em>Verify each case</em>
1) For P=41.0 in
substitute in the formula of perimeter and solve for x
41.0=30+2x
2x=41.0-30
x=5.5 in
Is not a solution because the value of x must be greater than 15 inches
2) For P=51.2 in
substitute in the formula of perimeter and solve for x
51.2=30+2x
2x=51.2-30
x=10.6 in
Is not a solution because the value of x must be greater than 15 inches
3) For P=72.4 in
substitute in the formula of perimeter and solve for x
72.4=30+2x
2x=72.4-30
x=21.2 in
Could be a solution because the value of x is greater than 15 inches
4) For P=81.2 in
substitute in the formula of perimeter and solve for x
81.2=30+2x
2x=81.2-30
x=25.6 in
Could be a solution because the value of x is greater than 15 inches
therefore
The smallest possible perimeter of the triangle, rounded to the nearest tenth is 72.4 in
Answer:
y(total cost)=35n+125
Step-by-step explanation:
First day: 19n+40
Second day: 16x+85
Total: 35n+125
Let

denote the random variable for the weight of a swan. Then each swan in the sample of 36 selected by the farmer can be assigned a weight denoted by

, each independently and identically distributed with distribution

.
You want to find

Note that the left side is 36 times the average of the weights of the swans in the sample, i.e. the probability above is equivalent to

Recall that if

, then the sampling distribution

with

being the size of the sample.
Transforming to the standard normal distribution, you have

so that in this case,

and the probability is equivalent to
