Answer:
causes a substance to change from a liquid to a solid.
Explanation:
Answer:
The pellet fraction will be most radioactive because the heavy protein part of ghost will be present in the the pellet fraction.
Explanation:
supernatant can be defined as a liquid part that lies above the sediment of the centrifuge tube on the other hand pallet is a solid material present at the bottom end of the centrifuge tube.
As protein molecules in the given experiment is radio labelled that"s why the pellet fraction will be radio labeling part because the heavy protein molecules will be present in the pellet fraction.
Answer: 250 kJ
Explanation: According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to Hess’s law, the chemical equation can be treated as algebraic expressions and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
(1)
(2)
Net chemical equation:
(3)
Adding 1 and 2 we get,
(4)
Now dividing equation (4) by 4, we get
(4)
The given question is incomplete. The image present in the question for Reaction A is attached below along with the answer.
Explanation:
Pyruvate molecule reacts with Coenzyme A in the presence of oxygen and it results in the formation of acetyl Coenzyme A and carbon dioxide.
The enzyme pyruvae dehydrogenase helps in catalyzing this reaction. As in this biochemical reaction
gets converted into NADH.
This reaction is shown in the image attached below.
We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.