Option a is correct. The calculated answer is 0.150
<h3>How to get the value using the cdf</h3>
In order to get P(0.5 ≤ X ≤ 1.5).
This can be rewritten as
p = 0.5
and P = 1.5
We have the equation as

This would be written as
1.5²/16 - 0.5²/16
= 0.1406 - 0.015625
= 0.124975
This is approximately 0.1250
Read more on cdf here:
brainly.com/question/19884447
#SPJ1
<h3>complete question</h3>
Use the cdf to determine P(0.5 ≤ X ≤ 1.5).
a) 0.1250
b) 0.0339
c) 0.1406
d) 0.0677
e) 0.8750
f) None of the above
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
The answer is B.about 400, because if you multiply 18 by 24 you get the answer without rounding, and that answer would be 434; once 434 is rounded to the closest possible answer, you get that the answer, which is, as stated before, B. about 400.
49/12
Just mulitply the top and the bottom across.
7*7/4*3
49/12