9514 1404 393
Answer:
373 miles
Step-by-step explanation:
The difference in latitude is ...
39.1° -33.7° = 5.4° = 0.54°(π/180°) radians = 0.03π radians
The arc length is given by ...
s = rθ, where θ is the angle in radians
The length of the arc along the longitude line is ...
s = (3960 mi)(0.03π) ≈ 373 mi
The distance from Atlanta to Cincinnati is about 373 miles.
Answer:
Step-by-step explanation:
Please excuse my handwriting lol.
Answer:
x = -1, y = 1
Step-by-step explanation:
6 + 4x - 2y = 0 (1)
-3 - 7y = 10x (2)
From (1)
6 + 4x - 2y = 0 (1)
4x - 2y = -6 (3)
From (2)
-3 - 7y = 10x (2)
10x + 7y = -3 (4)
4x - 2y = -6 (3)
10x + 7y = -3 (4)
Using elimination method
Multiply (3) by 10 and (4) by 4 to eliminate x
40x - 20y = -60
40x + 28y = -12
28y - (-20y) = -12 - (-60)
28y + 20y = -12 + 60
48y = 48
y = 48/48
y = 1
Substitute y = 1 into (3)
4x - 2y = -6 (3)
4x - 2(1) = -6
4x - 2 = -6
4x = -6 + 2
4x = -4
x = -4/4
x = -1
x = -1, y = 1
The value of x in the equation is -1
if the diameter is 20, the its radius must be half that or 10.
![\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ A=5\pi \\ r=10 \end{cases}\implies \begin{array}{llll} 5\pi =\cfrac{\theta \pi (10)^2}{360}\implies 5\pi =\cfrac{5\pi \theta }{18} \\\\\\ \cfrac{5\pi }{5\pi }=\cfrac{\theta }{18}\implies 1=\cfrac{\theta }{18}\implies 18=\theta \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20sector%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%5E2%7D%7B360%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3D%5Cstackrel%7Bdegrees%7D%7Bangle%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20A%3D5%5Cpi%20%5C%5C%20r%3D10%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%205%5Cpi%20%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20%2810%29%5E2%7D%7B360%7D%5Cimplies%205%5Cpi%20%3D%5Ccfrac%7B5%5Cpi%20%5Ctheta%20%7D%7B18%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B5%5Cpi%20%7D%7B5%5Cpi%20%7D%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%201%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%2018%3D%5Ctheta%20%5Cend%7Barray%7D)