15.3 litres of water will be produced if we take 1.7 litres of Hydrogen
Explanation:
Let's take a look over synthesis reaction;
<u> </u>
<u />
<u>Balancing the chemical reaction;</u>
<u> </u>
<u />
Thus, 2 moles of hydrogen molecules are required to form 2 moles of water molecules.
<u>Equating the molarity;</u>
<u />
= 
(Since, the molecular mass of hyd and water is 2 and 18 respectively)
x=
x= 15.3 litres.
Thus,15.3 L of water will be produced if we take 1.7 litres of Hydrogen in a synthesis reaction.
Answer:
53.6 g of N₂H₄
Explanation:
The begining is in the reaction:
N₂(g) + 2H₂(g) → N₂H₄(l)
We determine the moles of each reactant:
59.20 g / 28.01 g/mol = 2.11 moles of nitrogen
6.750 g / 2.016 g/mol = 3.35 moles of H₂
1 mol of N₂ react to 2 moles of H₂
Our 2.11 moles of N₂ may react to (2.11 . 2) /1 = 4.22 moles of H₂, but we only have 3.35 moles. The hydrogen is the limiting reactant.
2 moles of H₂ produce at 100 % yield, 1 mol of hydrazine
Then, 3.35 moles, may produce (3.35 . 1)/2 = 1.67 moles of N₂H₄
Let's convert the moles to mass:
1.67 mol . 32.05 g/mol = 53.6 g
Answer:
A. The rate of heat transfer through the material would increase.
Explanation:
To calculate the heat transfer in a heat exchanger you decide that there is not heat leakage to the surroundings, that means that magnitude of the two transfer rates will be equal. Any heat lost by the hot fluid, is gained by the cold fluid. The equation that describes this is Q = m×Cp×dT
Where:
heat = mass flow ×specific heat capacity × temperature difference
So if we increase the rate of flow of cooling water and the other variables that ypu can control remain the same, the result is that the rate of heat transfer through the material would increase, as it is stated in option a.
Answer:The Zinc Reacts With The Hydrochloric Acid Producing Zinc Chloride And Hydrogen Gas, And Leaving The Copper Behind. A. If 25.0 G Of Zinc ... Zn+ 2 HCI --> ZnCl2 + H2 (answer .771 G H2) B. If The Reaction Yields . ... If 25.0 g of zinc are in a sample of bronze, determine the theoretical yield of hydrogen gas. Zn+ 2 HCI
Following the Law of Conservation of Mass, you simply add the mass of both substances. Thus, 160 grams + 40 grams = 200 grams. So, even if initially, they are in liquid and solid form, they would still have the same mass even if they change phases, owing to that they are in a closed space.