Answer:
The conversion of liquid water into gaseous water is a chemical change
Explanation:
A chemical change occurs when there is a chemical reaction, so there'll be changed in the compounds, such as forming new ones, forming its elements, or elements forming compounds.
A physical change occurs when there is a change in the state of aggregation of the compound, it means that it changes its physical state. Solid for liquid, liquid for solid, liquid for gas, gas for liquid, solid for gas, and gas for solid are the physical changes.
So the evaporation of water, or its conversion in gaseous water, is a physical change, not a chemical change.
To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.
Answer:
please where is the Gibb free energy to indicate if its exothermic or endothermic reaction but the chemical equation is homogeneous one.
<h3>
Answer:</h3>
1.25 moles (R.T.P.) or 1.34 moles (S.T.P.)
<h3>
Explanation:</h3>
- 1 mole of a gas occupies a volume of 24 liters at room temperature and pressure (R.T.P.)
- On the other hand, 1 mole of a gas will occupy 22.4 Liters at standard temperature and pressure (S.T.P.)
Therefore, at R.T.P.
30.0 Liters will be equivalent to;
= 30.0 L ÷ 24 L
= 1.25 moles
At S.T.P
30.0 Liters will be equivalent to;
= 30.0 L ÷ 22.4 L
= 1.34 moles
Thus, 30.0 L of helium gas are equivalent to 1.25 moles of He at R.T.P. and 1.34 moles at S.T.P.