Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.

That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.
<span>The question says,'Mathew was working with different concentrations of hydrochloric acid in the lab. Which of these would best describe the resulsts Mathew would see if he was using a conductivity apparatus in each of the different acid concentration. The correct answer is C. This is because, acids conduct electricity, the stronger the acid, the brighter the electricity that will be produced while the weaker the acid, the weaker the electricity that will be produced. Thus, higher concentration equals tronger electricity.</span>
It is highly reactive and when it is kept in open it does react with the oxygen present in the surroundings and burns therefore it is kept immersed in kerosene and please thank me and if you need more comment