Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
Uhh it is used to detirmine heat
The one fact that needs to be mentioned but isn't given anywhere on or around the graph is: The distance, on the vertical axis, is the distance FROM home. So any point on the graph where the distance is zero ... the point is in the x-axis ... is a point AT home.
Segment D ...
Walking AWAY from home; distance increases as time increases.
Segment B ...
Not walking; distance doesn't change as time increases.
Segment C ...
Walking away from home, but slower than before; distance increases as time increases, but not as fast. Slope is less than segment-D.
Segment A ...
Going home; distance is DEcreasing as time increases. Walking pretty fast ... the slope of the line is steep.
By working with percentages, we want to see how many inches is the center of gravity out of the limits. We will find that the CG is 1.45 inches out of limits.
<h3>What are the limits?</h3>
First, we need to find the limits.
We know that the MAC is 58 inches, and the limits are from 26% to 43% MAC.
So if 58 in is the 100%, the 26% and 43% of that are:
- 26% → (26%/100%)*58in = 0.26*58 in = 15.08 in
- 43% → (43%/100%)*58in = 0.43*58 in = 24.94 in.
But we know that the CG is found to be 45.5% MAC, then it measures:
(45.5%/100%)*58in = 0.455*58in = 26.39 in
We need to compare it with the largest limit, so we get:
26.39 in - 24.94 in = 1.45 in
This means that the CG is 1.45 inches out of limits.
If you want to learn more about percentages, you can read:
brainly.com/question/14345924
Answer:
B = 0.546 T, F = 2.59 10⁻¹² N
Explanation:
The magnetic force is
F = q v x B
We can calculate the magnitude of the force and find the direction by the right hand rule
F = q v B sin θ
Let's use Newton's second law
F = m a
Acceleration is centripetal
a = v² / r
We substitute
q v B sin θ = m v² / r
The angle between the field and the radius of the circle is 90º so sin 90 = 1
q B = m v / r
B = m v / q r
Let's calculate ’
B = 1.67 10⁻²⁷ 2.97 10⁷ / (1.60 10⁻¹⁹ 0.568)
B = 0.546 T
The foce is
F = q v B
F = 1.60 10⁻¹⁹ 2.97 10⁷ 0.546
F = 2.59 10⁻¹² N