1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
2 years ago
7

How could you determine the injuries or ill person in a secondary assessment?

Physics
2 answers:
Natasha_Volkova [10]2 years ago
7 0

Signs look, listen, feel and smell for any signs of injury such as swelling, deformity, bleeding, discolouration or any unusual smells. When checking them you should always compare the injured side of the body with the uninjured side. Are they able to perform normal functions such as standing or moving their limbs

Secondary assessments are used in order to determine the injury, how the injury occurred, how severe the injury is, and to eliminate further injury.

Glad to help!

lana66690 [7]2 years ago
6 0

Answer:

just in internet tho

You might be interested in
Verify that the SI unit of impulse is the same as the SI unit of momentum.
lys-0071 [83]

Maybe this will help you out:

Momentum is calculate by the formula:

P = mv

Where:

P = momentum

m = mass      

v = velocity

The SI unit:

mass = kg\\ velocity = \dfrac{m}{s}

So the unit of momentum would be:

kg.\dfrac{m}{s}

Impulse is defined as the change in momentum or how much force changes momentum. It can be calculate with the formula:

I = FΔt

where:

I = impulse

F = Force

Δt = change in time

The SI unit:

F = Newtons (N) or kg.\dfrac{m}{s^{2} }

t = Seconds (s)

So the unit of impulse would be derived this way:

I = FΔt

I = kg.\dfrac{m}{s^{2} } x s

or

\dfrac{kg.m.s}{s^{2}} = \dfrac{kg.m.s}{s.s}

You can then cancel out one s each from the numerator and denominator and you'll be left with:

kg.\dfrac{m}{s}

So then:

Momentum:                             Impulse

kg.\dfrac{m}{s}                                       kg.\dfrac{m}{s}

4 0
3 years ago
What is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is 22 km/h and the coef
Aleks [24]
First, let's put 22 km/h in m/s:

22 \frac{km}{h} \times  \frac{1000m}{1km}  \times  \frac{1h}{3600s}=6.11 \frac{m}{s}

Now the radial force required to keep an object of mass m, moving in circular motion around a radius R, is given by

F_{rad}=m \frac{v^2}{R}

The force of friction is given by the normal force (here, just the weight, mg) times the static coefficient of friction:

F_{fric}= mg \mu_{s}

Notice we don't use the kinetic coefficient even though the bike is moving.  This is because when the tires meet the road they are momentarily stationary with the road surface.  Otherwise the bike is skidding.

Now set these equal, since friction is the only thing providing the ability to accelerate (turn) without skidding off the road in a line tangent to the curve:

m\frac{v^2}{R} = mg \mu_{s} \\ \\ \frac{v^2}{R} = g \mu_{s} \\ \\R= \frac{v^2}{g \mu_{s}} \\ \\ R= \frac{6.11}{9.8 \times 0.37}=1.685m

3 0
3 years ago
A 3,000 kg truck moving at +10 m/s hits a 1,000 kg parked car which moves off at +15 m/s What is the velocity of
Rina8888 [55]

Answer:

v₃ = 5 [m/s]

Explanation:

To solve this problem we must use the definition of linear momentum, which tells us that momentum is equal to the product of mass by Velocity.

P = m*v

where:

P = linear momentum [kg*m/s]

m = mass [kg]

v = velocity [m/s]

We must also clarify that the momentum is preserved i.e. it is equal before the collision and after the collision

Pbeforecollision = Paftercollision

(m₁*v₁) + (m₂*v₂) = (m₁*v₃) + (m₂*v₄)

where:

m₁ = mass of the truck = 3000 [kg]

v₁ = velocity of the truck = 10 [m/s]

m₂ = mass of the car = 1000 [kg]

v₂ = velocity of the car before the collision = 0 (the car is parked)

v₃ = velocity of the truck after the collision [m/s]

v₄ = velocity of the car after the collision = 15 [m/s]

(3000*10) + (1000*0) = (3000*v₃) + (1000*15)

30000 = 3000*v₃ + 15000

3000*v₃ = 30000 - 15000

3000*v₃ = 15000

v₃ = 5 [m/s]

7 0
3 years ago
How is artificial gravity created in spaceships and sattelites ?????? U need some IQ for this
goldfiish [28.3K]

Explanation:

Artificial gravity can be created using a centripetal force. A centripetal force directed towards the center of the turn is required for any object to move in a circular path. In the context of a rotating space station it is the normal force provided by the spacecraft's hull that acts as centripetal force.

Hope it helps.

4 0
2 years ago
Read 2 more answers
A solid uniform disk of diameter 3.20 m and mass 42 kg rolls without slipping to the bottom of a hill, starting from rest. If th
Korvikt [17]

Answer:

A(3.56m)

Explanation:

We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.

We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.

Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2

Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2=  v^2).

Ef= -mgh+3/4mv^2

Since Ef=Ei=0

Mgh=3/4mv^2

gh=3/4v^2

h=0.75v^2/g

plug in givens to get h= 3.57m

5 0
3 years ago
Other questions:
  • Two teams are playing tug of war. The team on the right side is pulling with a force of 4332 N. The team on the left is pulling
    6·2 answers
  • The magnetic field at the center of a 1.40-cm-diameter loop is 2.50 mT . PART A) What is the current in the loop?
    11·1 answer
  • If an object is accelerating, can the net force acting on it be zero?
    10·2 answers
  • Which tool would you use to measure how long it takes a toy car to go down a ramp?
    10·2 answers
  • Convert 6.32 sec to days
    5·1 answer
  • A baseball is hit almost straight up into the air with a speed of 26 m/s . Estimate how high it goes.
    9·1 answer
  • A 10kg object rests on a frictionless surface when it is struck by a 300N force. At what rate will it accelerate?
    11·2 answers
  • 2. An 873 kg dragster accelerates at a rate of 44.6 m/s during a race.
    15·1 answer
  • First Amendment
    15·2 answers
  • Because of the high sugar and caffeine content in energy drinks, disregarding the unpredictable risks, what are two other increa
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!