Answer:
The frequency would double.
Explanation:
Given:
Speed of wave (v) = constant.
Frequency of wave initially (f₁) = 2 Hz
Initial wavelength of the wave (λ₁) = 1 m
Final wavelength of the wave (λ₂) = 0.5 m
Final frequency of the wave (f₂) = ?
We know that the product of wavelength and frequency of the wave is equal to the speed of the wave.
Therefore, framing in equation form, we have:
Wavelength × Frequency = Speed

It is given that speed of the wave remains the same. So, the product must always be a constant.
Therefore,

Now, plug in the given values and solve for 'f₂'. This gives,

Therefore, the final frequency is 4 Hz which is double of the initial frequency.
f₂ = 2f₁ = 2 × 2 = 4 Hz
So, the second option is correct.
I believe that the correct answer you are looking for is the distance traveled
Explanation:
13 cmHg (centimeters of mercury) is the pressure at the bottom of a column of mercury 13 cm deep. It is the equivalent of about 17.3 kPa or 2.5 psi.
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>