Answer : The correct option is, (a) 345 K
Explanation :
The conversion used for the temperature from degree Celsius to Kelvin is:
where,
= temperature in Kelvin
= temperature in centigrade
As we are given the temperature in degree Celsius is, 72
Now we have to determine the temperature in Kelvin.
Therefore, the temperature in Kelvin is, 345 K
Answer : The mass of reactant
remain would be, 0.20 grams.
Solution : Given,
Moles of
= 0.40 mol
Moles of
= 0.15 mol
Molar mass of
= 2 g/mole
First we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 1 mole of
react with 2 mole of 
So, 0.15 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
The moles of reactant
remain = 0.40 - 0.30 = 0.10 mole
Now we have to calculate the mass of reactant
remain.


Therefore, the mass of reactant
remain would be, 0.20 grams.
36inches in the air first bounce second bounce 15
Answer:
27.99 dm³
Explanation:
Applying
PV = nRT................ Equation 1
Where P = Pressure, V = Volume, n = number of mole, R = molar gas constant, T = Temperature.
From the question, we were aksed to find V.
Therefore we make V the subject of the equation
V = nRT/P................ Equation 2
Given: n = 1.31 moles, T = 37°C = 310K, P = 904 mmHg = (904×0.001316) = 1.1897 atm
Constant: R = 0.082 atm.dm³/K.mol
Substitute these values into equation 2
V = (1.31×310×0.082)/(1.1897)
V = 27.99 dm³
The answer is A. Water
Bronsted-Lowry base compounds are those that can accept protons
Bronsted-Lowry Acid Compounds are those that can recieve one
Water / H2O is an Amphoteric compund which mean that its molecul can act as a Base and Acid compound, so the answer is A.