Main Answer: The standard electrode potential of galvanic cell constructed from barium and manganese electrode is 4.097.
Explanation:
When the galvanic cell constructed between Manganese and Barium, the half reactions will be as follows:
Mn2+(aq) + 2e-⟶ Mn(s) E1 = −1.185
Ba2+(aq) + 2e-⟶ Ba(s) E2 = −2.912
By considering the above two reactions, the standard electrode potential can be calculated.
The galvanic cell standard electrode potential is given by E1 + E2 = 1.185 + 2.912 = 4.097 volts
What is standard electrode potential?
Standard electrode potential is defined as the measure of reducing power of any compound or element. Its units are volts.
To know more about galvanic cell, please visit:
brainly.com/question/13031093
#SPJ4
1143.4grams of solute are needed to make 2.50L of a 1.75M solution of Ba(NO3)2. Details about molarity can be found below.
<h3>How to calculate mass?</h3>
The mass of a substance can be calculated by multiplying the number of moles by its molar mass.
However, the number of moles can be calculated by using the following formula:
Molarity = no of moles ÷ volume
no of moles = 1.75 × 2.5
no of moles = 4.38mol
molar mass of Ba(NO3)2 = 261.34g/mol
mass of Ba(NO3)2 = 261.34 × 4.38
mass of Ba(NO3)2 = 1143.4grams.
Therefore, 1143.4grams of solute are needed to make 2.50L of a 1.75M solution of Ba(NO3)2.
Learn more about mass at: brainly.com/question/19694949
Fe: 2+
Br: 1-
Checked on the periodic table
Answer:
27.4 gram is the solution it's simple dude...
Explanation:
don't be afraid of huge question they confuse you you need not to be confused
now see simple solution
molality is denoted by m
so
m= moles of solute / mass of solvent in kg.
i hope your know the meaning of solute and solvent....
so moles are given 0.467
and molar mass is given 58.44
so just take out the gram means
by applying formula
58.44×0.467
it will give 27.4 grams simple.....