I'm pretty sure its False
The answer is B) thou you might find a few shrubs
Answer:
Codominant- traits don’t have a clear dominant or recessive
incomplete dominance- the heterozygous condition shows a “blending” or a “middle” condition
Explanation:
In codominance, the traits are expressed equally in the phenotype thus they don't have a clear dominant or recessive state. For example the ABO blood group alleles. The alleles A and B are codominant each being expressed equally.
In incomplete dominance the traits show intermediate expression where one allele expresses itself more strongly than the other. An example in man is seen in the inheritance of the disease sickle cell anaemia. Heterozygote who carry the sickle cell gene are said to have sickle cell trait and as such the carrier allele (HBa) has a stronger influence on the phenotype than the dominant alle (HBs).
<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>mutation</u></em><em><u> </u></em><em><u>Mutations are changes to an organism's DNA and are an important driver of diversity in</u><u> </u><u>populations.</u><u> </u><u>This mutation has introduce a new allele into the population that increases genetic variation and may be passed on to the next generation.</u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u>.</u></em>
Answer:
Due to different pigments.
Explanation:
The multicellular algae are red, green and brown because of the presence of pigments. The red algae are red in colour because of the presence of the phycoerythrin which is a type of pigment. This pigment reflects red light due to already presence in its body and absorbs blue light that is necessary for photosynthesis process. The brown algae contain fucoxanthin pigment and green algae contain xanthophylls pigments that are responsible for its colour so we can conclude that these different types of pigments are responsible for the different colour of algae.