No thats false. If your trying to say is true that people BELIEVED that then yes its true people believed it but if your talking about that question then its false
Answer:
The speed of the car when load is dropped in it is 17.19 m/s.
Explanation:
It is given that,
Mass of the railroad car, m₁ = 16000 kg
Speed of the railroad car, v₁ = 23 m/s
Mass of additional load, m₂ = 5400 kg
The additional load is dropped onto the car. Let v will be its speed. On applying the conservation of momentum as :



v = 17.19 m/s
So, the speed of the car when load is dropped in it is 17.19 m/s. Hence, this is the required solution.
The answer is 3) 3.00 m/s2
Answer:
B
Explanation:
I hope this is what you need
PLEASE MAKE ME BRAINLIEST
Answer:
a) The uniform velocity travelled by the car is 10 meters per second.
(Point b has been erased by the user)
c) The distance travelled by the car with uniform velocity is 100 meters.
Explanation:
a) Calculate the uniform velocity travelled by the car:
The uniform velocity is the final velocity (
), in meters per second, of the the uniform accelerated stage:
(1)
Where:
- Initial velocity, in meters per second.
- Acceleration, in meters per square second.
- Time, in seconds.
If we know that
,
and
, then the uniform velocity is:


The uniform velocity travelled by the car is 10 meters per second.
(Point b has been erased by the user)
c) The distance travelled by the car (
), in meters, with uniform velocity is calculated by the following kinematic expression:
(2)
If we know that
and
, then the distance travelled is:


The distance travelled by the car with uniform velocity is 100 meters.