Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
The answer would be 46.482 because you multiply 18.3 by 2.54 because for every inch you get 2.54 centimeters
The sphere slow down due to friction force between the surface of the sphere and the surface on that the sphere is rolling . The friction force acting against the motion of the sphere. Thats why it is slowed down. In fact not only a sphere, anything can not slow down untill a force act against it's motion.
Answer:
q = 8.61 10⁻¹¹ m
charge does not depend on the distance between the two ships.
it is a very small charge value so it should be easy to create in each one
Explanation:
In this exercise we have two forces in balance: the electric force and the gravitational force
F_e -F_g = 0
F_e = F_g
Since the gravitational force is always attractive, the electric force must be repulsive, which implies that the electric charge in the two ships must be of the same sign.
Let's write Coulomb's law and gravitational attraction
In the exercise, indicate that the two ships are identical, therefore the masses of the ships are the same and we will place the same charge on each one.
k q² = G m²
q =
m
we substitute
q =
m
q =
m
q = 0.861 10⁻¹⁰ m
q = 8.61 10⁻¹¹ m
This amount of charge does not depend on the distance between the two ships.
It is also proportional to the mass of the ships with the proportionality factor found.
Suppose the ships have a mass of m = 1000 kg, let's find the cargo
q = 8.61 10⁻¹¹ 10³
q = 8.61 10⁻⁸ C
this is a very small charge value so it should be easy to create in each one
Answer:
B. 30 m down
Explanation:
In physics we have two types of quantities:
- Scalar quantity: it is a quantity which only has a magnitude (e.g: mass and time are scalar quantities, since they only have a magnitude)
- Vector quantity: it is a quantity which has both a magnitude and a direction (e.g: velocity is a vector quantity, since it has a magnitude (the speed) and a direction)
In this problem, we have:
A. 100 ounces of water --> scalar (this is a volume, which has only a magnitude)
B. 30 m down --> vector (this is a displacement, which has both a magnitude (30 m) and a direction (down)
C. 88 mi/s --> scalar (this is a speed, which has only a magnitude)
D. 45 gallons in a bucket --> scalar (this is a volume, which has only a magnitude)
So, the correct option is B.