Answer: D. An action-reaction force pair
Explanation: When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body. There are two forces resulting from this interaction - a force on the chair and a force on your body. Another example would be a person pushing against a wall (action force), and the wall exerts an equal and opposite force against the person.
True because friction happens when two things are rubbed against each other and it creates force and sliding something vigorously against something else can create force.
1). c ... 2). d ... 3). a ... 4). d ... 5). c ... 6). a
7). b-mass ... c-m/s ... d-Newton's 1st ... e-Newton's 2nd
The time it takes an object to complete one oscillation and return to its initial position is measured in terms of a period, or T. The formula for the angular frequency is = 2/T.
<h3>How is G determined in oscillation?</h3>
Use a stopwatch to calculate the oscillation's time period T. Calculate the pendulum's length L. Subtract the time period T's square from the length L.
<h3>How does oscillation's G work?</h3>
A mass attached to the end of a pendulum with a length of l causes it to oscillate with a period (T). T = 2(l/g), where g.
To know more about angular frequency visit:-
brainly.com/question/29107224
#SPJ4
Given:
B =
T
V=
q = 2.5 ×
C
α = 90
To find:
Force = ?
Formula used:
Force on the moving charge is given by,
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
Solution:
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
F = 
F = 37.5 × 
F = 3.75 Newton
Thus, the force acting on the moving charge is 3.75 Newton.