Distance = (30+40+50) = 120 km
It's back where it started, so displacement = zero
Answer:
A sample of 5.2 mg decays to .65 mg or to 1/8 of its original amount.
1/8 = 1/2 * 1/2 * 1/2 or 3 half-lives.
3 * 30.07 = 90 yrs for 5.2 mg to decay to .65 mg
You can get these other numbers similarly:
5.2 / .0102 = 510 requires about 9 half-lives which is 30 * 9 = 270 yrs
5m/s
Explanation:
Given parameters:
Mass of ball = 0.1kg
Force on the ball = 5N
time taken = 0.1s
Unknown:
final speed of the ball = ?
Solution:
According to newton's second law "the net force on a body is the product of its mass and acceleration".
Force = mass x acceleration equation 1
Acceleration =
V is the final velocity
U is the initial velocity
T is the time taken
U = O since it is a stationary body;
a = 
Input "a" into equation 1
F = m x 
5 = 0.1 x 
V = 5m/s
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
v = 3.00 x 10⁸ m/s
Explanation:
given,
speed of light in vacuum = 299,792,458 m/s
speed of light in scientific notation to three significant figures
v = 2.99792458 x 10⁸ m/s
by rounding off the speed to three significant figure.
v = 3.00 x 10⁸ m/s
On the fourth place the value is greater than 5 so, on the third place 1 will be added.
now, the speed with three significant figure comes out to be
v = 3.00 x 10⁸ m/s
Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>