Answer:
Acceleration of the ship, 
Explanation:
It is given that,
Mass of both ships, 
Distance between two ships, d = 110 m
The gravitational force between two ships is given by :


F = 8.38 N
Let a is the acceleration. Now, using second law of motion as :



So, the acceleration of either ship due to the gravitational attraction of the other is
. Hence, this is the required solution.
Elastic potential energy.
When you stretch a rubber band it has the "potential" to do work, to fly in a given direction. In doing so it changes it's elastic potential energy to kinetic energy.
Answer: The level of CO2 has risen.
Explanation:
From the table shown, we can see that the quantity of CO₂ in the atmosphere has steadily risen since the year 1960 going from 317 CO₂PPM in that year to 390 CO₂PPM in 2010.
This is a cause for alarm because with so much carbon dioxide in the atmosphere, there will be an even greater greenhouse effect that will contribute to global warming.
Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x