The solution for this problem is:
Let x denote the specific rotation, R; andLet y denote the specific rotation, S = -x
Solution:60 x - 40 x/100 = - 43
20x = - 4300Divide both sides by 20The answer is:x = - 215 is the specific rotation of the pure r isomer.
Question is incomplete, the complete question is as follows:
A student wants to examine a substance by altering the bonds within its molecules. Which of the following properties of the substance should the student examine?
A. Toxicity, because it can be observed by altering the state of the substance
B. Boiling point, because it can be observed by altering the state of the substance
C. Toxicity, because it can be observed by replacing the atoms of the substance with new atoms
D. Boiling point, because it can be observed by replacing the atoms of the substance with new atoms
Answer:
B.
Explanation:
A student can examine a substance without altering the bonds within the molecules by examining its boiling point.
The boiling point is the property of a substance, at which the substance changes its state, which is from solid to liquid, liquid to gas and others. So, examining the boiling point will alter the bonds within the molecules as the state of substance will change.
Hence, the correct answer is "B".
Answer:
- <em>(B.) The pH of a buffer solution is determined by the ratio of the concentration of conjugate base to the concentration of strong acid.</em>
- <em>(C.) A buffer is generally made up of a weak acid and its conjugate base. </em>
- <em>(D.) The pH of a buffer solution does not change significantly when any amount of a strong acid is added.</em>
Explanation:
A buffer is solution which resists change in pH upon addition of either acids or bases.
The pH of a buffer is calculated by the ratio of the concentration of base to concentration of acid. The weak acid and conjugate base have a Ka similar to the pH desired.
The following reaction gives a product with the molecular formula C₄H₈O₂. The diagram of the structure of the product can be seen in the image attached below.
The reaction between C₂H₂(ONa)₂ and C₂H₄Br results in the formation of the product C₄H₈O₂ and 2NaBr.
This reaction undergoes an SN₂ mechanism since there is no stable carbocation formed. In the reaction -O⁻Na⁺ attacks the ortho position in C₂H₄Br to form C₄H₈O₂.
In SN₂ mechanism is a nucleophilic substitution reaction where one bond is formed while another one is broken simultaneously.
The mechanism for the reaction can be seen in the image attached below.
Learn more about nucleophilic substitution reaction here:
brainly.com/question/4699407?referrer=searchResults
Answer:
C3H8 + 5O2 => 3CO2 + 4H2O
Explanation:
Hydrocarbon combustion is the reaction between a hydrocarbon and O2 producing CO2 and water.
C3H8 + O2 => CO2 + H2O
First we balance the C and H.
C3H8 + O2 => 3CO2 + 4H2O
Now we balance O for the answer!
C3H8 + 5O2 => 3CO2 + 4H2O