<span>You are given a circuit that contains a 6.0-v battery, a 4.0 ohm resistor, a 0.60 micro farad capacitor, an ammeter, and a switch all in series. You are asked to find the current reading after the switch is closed. Apply ohms law where V = IR where V is the voltage, I is the current and R is the resistor.</span>
V = IR
I = V/R
I = 6 volts / 4 ohms
I = 1.5A
When the switch is closed, the cathode side plate begins to fill up with electrons when it was originally empty before the switch was closed. When it fills up the cathode side of the circuit, the current decreases. And when the capacitor cannot hold more electrons, the current will stop. The higher the capacitance, the higher is the capacity to store electrons.
a. 7.0 m/s
First of all, we need to convert the angular speed (1200 rpm) from rpm to rad/s:

Now we know that the row is located 5.6 cm from the centre of the disc:
r = 5.6 cm = 0.056 m
So we can find the tangential speed of the row as the product between the angular speed and the distance of the row from the centre of the circle:

b. 
The acceleration of the row of data (centripetal acceleration) is given by

where we have
v = 7.0 m/s is the tangential speed
r = 0.056 m is the distance of the row from the centre of the trajectory
Substituting numbers into the formula, we find

It is a surface force
<span />
Answer:
Time, I believe. Pretty sure it's time lol