1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
2 years ago
13

The small spherical planet called "Glob" has a mass of 7.88×10^18 kg and a radius of 6.32×10^4 m. An astronaut on the surface of

Glob throws a rock straight up. The rock reaches a maximum height of 1.44×10^3 m, above the surface of the planet, before it falls back down.
1. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10^-11 Nm2/kg2.)

2. A 36.0 kg satellite is in a circular orbit with a radius of 1.45×10^5 m around the planet Glob. Calculate the speed of the satellite.
Physics
2 answers:
Anastaziya [24]2 years ago
4 0

The tiny planet known as "Glob" has a radius of 6.32× 10^4 meters and a mass of 7.88× 10^18 kg. On Glob's surface, an astronaut launches a rock straight upward. Before falling back down, the rock rises to a maximum height of 1.44×10^3 m above the planet's surface.

1) The rock was moving at 19.46 m/s when it first left the astronaut's palm.

2) A 36.0 kg spacecraft is orbiting the planet Glob in a sphere with a radius of 1.45 105 meters. The satellite is moving at 3.624 km/s at that point.

Understanding the planetary motion equations is necessary in order to determine the solution.

<h3>How to determine the rock's original speed when it left the astronaut's hand?</h3>
  • The starting velocity's expression is as follows:

                                V=\sqrt{2gh}

  • So, in order to determine v, we must determine the acceleration of glob caused by gravity. We already have,

                     a=\frac{GM}{r^2} =\frac{6.67*10^{-11}*7.88*10^{18}}{(6.32*10^4)^2} \\a=0.132m/s^2

  • The velocity will now change to,

                   V=\sqrt{2*0.132*1.44*10^3} =19.46m/s

<h3>How can I determine the satellite's speed?</h3>
  • As we are aware, the centripetal force and gravitational force are equivalent, and thus leads to the following satellite speed equation:

                         v=\sqrt{\frac{GM}{r} } =3,624km/s\\where,\\M=7.88*10^{18}kg

Consequently, we can say that

1) The rock was moving at 19.46 m/s when it first left the astronaut's palm.

2) A 36.0 kg spacecraft is orbiting the planet Glob in a sphere with a radius of 1.45 105 meters. The satellite is moving at 3.624 km/s at that point.

Learn more about the planetary motion here:

brainly.com/question/28108487

#SPJ4

Oksi-84 [34.3K]2 years ago
3 0

Answer: The small spherical planet called "Glob" has a mass of 7.88×1018 kg and a radius of 6.32×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×103 m, above the surface of the planet, before it falls back down.

1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.

2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.

Explanation: To find the answer, we need to know about the different equations of planetary motion.

<h3>How to find the initial speed of the rock as it left the astronaut's hand?</h3>
  • We have the expression for the initial velocity as,

                           v=\sqrt{2gh}

  • Thus, to find v, we have to find the acceleration due to gravity of glob. For this, we have,

                       g_g=\frac{GM}{r^2} =\frac{6.67*10^{-11}*7.88*10^{18}}{(6.32*10^4)^2}= 0.132

  • Now, the velocity will become,

                        v=\sqrt{2*0.132*1.44*10^3} =19.46 m/s

<h3>How to find the speed of the satellite?</h3>
  • As we know that, by equating both centripetal force and the gravitational force, we get the equation of speed of a satellite as,

                       v=\sqrt{\frac{GM}{r} } =\sqrt{\frac{6.67*10^{-11}*7.88*10^{18}}{1.45*10^5} } =3.624km/s

Thus, we can conclude that,

1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.

2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.

Learn more about the equations of planetary motion here:

brainly.com/question/28108487

#SPJ4

You might be interested in
Starting at 9a.m., you ride your hover board for 3hrs at an average speed of 6 mph. Out of breath, you stop for tea from noon un
Elena-2011 [213]
3 times 6= 18. The average speed is 19 mph.

hope this helps!
6 0
2 years ago
A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move t
Veronika [31]

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×10^{24} be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×10^{-11} N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=\sqrt{\frac{Gmm}{R+h} }         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = h_{i} = 98 km = 98000 m

∴Initial Energy (E_{i})  = \frac{1}{2}mv^{2} + \frac{-GMm}{(R+h_{i} )}

Substituting v=\sqrt{\frac{GMm}{R+h_{i} } } in the above equation and simplifying we get,

E_{i} = \frac{-GMm}{2(R+h_{i}) }

Similarly for final condition,

h=h_{f} = 198km = 198000 m

∴Final Energy(E_{f}) = \frac{-GMm}{2(R+h_{f}) }

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = E_{f} - E_{i}

        = \frac{GMm}{2}(\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} })

Substituting ,

M = 6 × 10^{24} kg

m = 1036 kg

G = 6.67 × 10^{-11}

R = 6400000 m

h_{i} = 98000 m

h_{f} = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = \frac{1}{2}m[v_{f} ^{2} - v_{i} ^{2}]

                                                          = \frac{GMm}{2}[\frac{1} {R+h_{f} } - \frac{1} {R+h_{i} }]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} }]

                                                             = 2ΔE

                                                             = 968.907 MJ

3 0
3 years ago
Which of the following does each different kind of atom represent?
r-ruslan [8.4K]

Answer:

B

Explanation:

because atoms make up an element.

5 0
3 years ago
Read 2 more answers
Define thermal conductivity.
ladessa [460]

Answer:

A measure of the ability of a material to transfer heat.

Explanation:

Please mark me as brainliest please

4 0
2 years ago
Help me yall it due in a few minutes :((()
vaieri [72.5K]

Answer:

B. blocks 2 & 3.

Explanation:

Block 1 has equal & opposite forces acting on it.

Block 2 has 5N on one side, 3N on the other. It will move in the direction the 5N of force is pushing.

Block 3 has no opposing force.

6 0
2 years ago
Other questions:
  • (a) Determine the required delta-v, Ave, to the nearest m/s, to reach a circular 500 km altitude equatorial prograde (eastward)
    5·1 answer
  • A spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the obse
    13·1 answer
  • What is the unit of G in the F=Gm1m2/r^2​
    8·2 answers
  • Un satélite geoestacionario se encuentra a una distancia de 120.000 km sobre la superficie de Júpiter. Determine: a. El periodo
    11·1 answer
  • What is common to all fossil fuels?
    15·2 answers
  • If an object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If
    8·1 answer
  • A bicycle has a mass of 10kg and an acceleration of 2m/s². What is the net force of the bicycle?
    14·1 answer
  • A car traveling 34 mi/h accelerates uniformly for 4 s, covering 615 ft in this time. What was its acceleration? Round your answe
    6·1 answer
  • What is measurements?​
    9·2 answers
  • In which situation does the reactive force between two colliding objects cause a physical change? (1 point)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!