1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
2 years ago
13

The small spherical planet called "Glob" has a mass of 7.88×10^18 kg and a radius of 6.32×10^4 m. An astronaut on the surface of

Glob throws a rock straight up. The rock reaches a maximum height of 1.44×10^3 m, above the surface of the planet, before it falls back down.
1. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10^-11 Nm2/kg2.)

2. A 36.0 kg satellite is in a circular orbit with a radius of 1.45×10^5 m around the planet Glob. Calculate the speed of the satellite.
Physics
2 answers:
Anastaziya [24]2 years ago
4 0

The tiny planet known as "Glob" has a radius of 6.32× 10^4 meters and a mass of 7.88× 10^18 kg. On Glob's surface, an astronaut launches a rock straight upward. Before falling back down, the rock rises to a maximum height of 1.44×10^3 m above the planet's surface.

1) The rock was moving at 19.46 m/s when it first left the astronaut's palm.

2) A 36.0 kg spacecraft is orbiting the planet Glob in a sphere with a radius of 1.45 105 meters. The satellite is moving at 3.624 km/s at that point.

Understanding the planetary motion equations is necessary in order to determine the solution.

<h3>How to determine the rock's original speed when it left the astronaut's hand?</h3>
  • The starting velocity's expression is as follows:

                                V=\sqrt{2gh}

  • So, in order to determine v, we must determine the acceleration of glob caused by gravity. We already have,

                     a=\frac{GM}{r^2} =\frac{6.67*10^{-11}*7.88*10^{18}}{(6.32*10^4)^2} \\a=0.132m/s^2

  • The velocity will now change to,

                   V=\sqrt{2*0.132*1.44*10^3} =19.46m/s

<h3>How can I determine the satellite's speed?</h3>
  • As we are aware, the centripetal force and gravitational force are equivalent, and thus leads to the following satellite speed equation:

                         v=\sqrt{\frac{GM}{r} } =3,624km/s\\where,\\M=7.88*10^{18}kg

Consequently, we can say that

1) The rock was moving at 19.46 m/s when it first left the astronaut's palm.

2) A 36.0 kg spacecraft is orbiting the planet Glob in a sphere with a radius of 1.45 105 meters. The satellite is moving at 3.624 km/s at that point.

Learn more about the planetary motion here:

brainly.com/question/28108487

#SPJ4

Oksi-84 [34.3K]2 years ago
3 0

Answer: The small spherical planet called "Glob" has a mass of 7.88×1018 kg and a radius of 6.32×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×103 m, above the surface of the planet, before it falls back down.

1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.

2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.

Explanation: To find the answer, we need to know about the different equations of planetary motion.

<h3>How to find the initial speed of the rock as it left the astronaut's hand?</h3>
  • We have the expression for the initial velocity as,

                           v=\sqrt{2gh}

  • Thus, to find v, we have to find the acceleration due to gravity of glob. For this, we have,

                       g_g=\frac{GM}{r^2} =\frac{6.67*10^{-11}*7.88*10^{18}}{(6.32*10^4)^2}= 0.132

  • Now, the velocity will become,

                        v=\sqrt{2*0.132*1.44*10^3} =19.46 m/s

<h3>How to find the speed of the satellite?</h3>
  • As we know that, by equating both centripetal force and the gravitational force, we get the equation of speed of a satellite as,

                       v=\sqrt{\frac{GM}{r} } =\sqrt{\frac{6.67*10^{-11}*7.88*10^{18}}{1.45*10^5} } =3.624km/s

Thus, we can conclude that,

1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.

2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.

Learn more about the equations of planetary motion here:

brainly.com/question/28108487

#SPJ4

You might be interested in
In your own words, explain why we see a rainbow or colorful sunset. Explain the properties and interactions that make this displ
Maksim231197 [3]
Wee see rainbows due to the geometries of the raindrops. when the sun shines behind, rays of light enter the raindrops and this light are refracted. The lights are then reflected from the back of the raindrop and refracted again as it passes the rain drop. Refraction in this sense is the cause for splitting the light into several colors.
7 0
3 years ago
If two waves pass a point every second what is the frequency of the waves
marishachu [46]
[two waves] pass a point [every second]... The answer is in the question (B)
7 0
3 years ago
How long does it take (in minutes) for light to reach venus from the sun, a distance of 1.152 × 108 km?
7nadin3 [17]
Using the precise speed of light in a vacuum (299,792,458 \ \frac{m}{s}), and your given distance of 1.152 * 10^{8} km, we can convert and cancel units to find the answer. The distance in m, using \frac{1000 \ m}{1 \ km}, is 1.152 * 10^{11} m. Next, for the speed of light, we convert from s to min, using \frac{1 \ min}{60 \ s}, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is 6.405 min.

7 0
3 years ago
A machine is designed to fill jars with 16 ounces of coffee. A consumer suspects that the machine is not filling the jars comple
babunello [35]

Answer:

a) Null hypothesis:  \mu \geq 16  

Alternative hypothesis :\mu  

b) t=\frac{15.6-16}{\frac{0.3}{\sqrt{8}}}=-3.77  

p_v =P(t_{(7)}  

If we compare the p value and the significance level given \alpha=0.1 we see that p_v so we can conclude that we have enough evidence to reject the null hypothesis.

c) We can conclude that the mean is significantly less than 16 ounces at 10% of significance.  so then the consumer suspect is correct.

Explanation:

Data given and notation  

\bar X=15.6 represent the mean for the sample

s=0.3 represent the sample standard deviation  

n=8 sample size  

\mu_o =16 represent the value that we want to test  

\alpha=0.1 represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

p_v represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

Is a one tailed left test.  

What are H0 and Ha for this study?  

Null hypothesis:  \mu \geq 16  

Alternative hypothesis :\mu  

The degrees of freedom on this case are:

df=n-1=8-1=7

Compute the test statistic

The statistic for this case is given by:  

t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}} (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic  

We can replace in formula (1) the info given like this:  

t=\frac{15.6-16}{\frac{0.3}{\sqrt{8}}}=-3.77  

Give the appropriate conclusion for the test

Since is a one side left tailed test the p value would be:  

p_v =P(t_{(7)}  

Conclusion  

If we compare the p value and the significance level given \alpha=0.1 we see that p_v so we can conclude that we have enough evidence to reject the null hypothesis.

We can conclude that the mean is significantly less than 16 ounces at 10% of significance.  so then the consumer suspect is correct.

3 0
3 years ago
A cannon at rest fires a 32.5 kg cannonball forward at 388 m/s. After firing, the cannon recoils at 7.42 m/s. What is the mass o
Bond [772]

Answer:

1700 kg

Explanation:

Let’s use conservation of momentum

32.5 * 388 = 7.42 * mc

mc = 1699.46

mc = 1700 kg

3 0
3 years ago
Other questions:
  • 5. How much does a suitcase weigh if it has a mass of 22.5 kg?
    10·2 answers
  • Which scientific design has the fewest limitations?
    12·1 answer
  • I need help with question 8 and 9
    8·1 answer
  • Why can beta particles pass through materials more easily than alpha particles? (2 points)
    6·2 answers
  • A ball is thrown vertically downwards at speed vo from height h. Draw velocity vs. time &amp; acceleration vs. time graphs. In t
    10·1 answer
  • What do you need to measure speed?
    8·1 answer
  • What force is needed to accelerate a 2000kg car to 15m/S2
    12·1 answer
  • Willing to give out brainliest... A vat of ethyl alcohol expands by 0.00823 m^ 3 when the temperature is raised by 44.8 °C . Wha
    8·1 answer
  • What is the answer for this please
    14·1 answer
  • Why sonic the hedgehog its so broken in power?​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!