Hello!
Vx = V0x + Ax*t
Vx = 18.1 + 2.4t
Let’s take time as 7.50 seconds:
Vx = 18.1 + 2.4*7.50
Vx = 18.1 + 18 = 36.1 m/s
Then, the final velocity of the car is 36.1 m/s.
Answer:

Explanation:
From the question we are told that:
Radius 
Charge Density 
Distance
Generally the equation for electric field is mathematically given by



Answer:
a) v = √ 2gL abd b) θ = 45º
Explanation:
a) for this part we use the law of conservation of energy,
Highest starting point
Em₀ = U = mg h
Final point. Lower
Em₂ = ½ m v²
Em₀ = Em₂
m g h = ½ m v²
v = √2g h
v = √ 2gL
b) the definition of power is the relationship between work and time, but work is the product of force by displacement
P = W / t = F. d / t = F. v
If we use Newton's second law, with one axis of the tangential reference system to the trajectory and the other perpendicular, in the direction of the rope, the only force we have to break down is the weight
sin θ = Wt / W
Wt = W sin θ
This force is parallel to the movement and also to the speed, whereby the scalar product is reduced to the ordinary product
P = F v
The equation that describes the pendulum's motion is
θ = θ₀ cos (wt)
Let's replace
P = (W sin θ) θ₀ cos (wt)
P = W θ₀ sint θ cos (wt)
We use the equation of rotational kinematics
θ = wt
P = Wθ₀ sin θ cos θ
Let's use
sin 2θ = 2 sin θ cos θ
P = Wθ₀/2 sin 2θ
This expression is maximum when the sine has a value of one (sin 2θ = 1), which occurs for 90º,
2θ = 90
θ = 45º
The displacement of the rock will be the same as the total horizontal distance traveled. Here the rock's horizontal position is given by

so to find the horizontal distance it traversed, we need to know the time it took for the rock to return to the ground. We use the rock's vertical position over time to figure that out:

where
is the acceleration due to gravity. Then we find that
, at which point we find
.
Answer:
Explanation:
vertical component of the velocity of arrow
= 26 sin 60 = 22.516 m
height reached by it after 3.99 s
h = ut - 1/2 g t²
= 22.516 x 3.99 - .5 x 9.8 x 3.99²
= 89.83 - 78
11.83 m
Total height of cliff = 1.55 + 11.83
= 13.38 m
c ) maximum height covered s
v² = u² - 2gs
0 = u² - 2gs
s = u² / 2g
= 22.516² / 2 x 9.8
= 25.86
maximum height reached
= 25.86 + 1.55
= 27.41 m
d )
vertical speed after 3.99 s
v = u - gt
= 22.516 - 9.8 x 3.99
= -16.586
Horizontal component will remain unchanged
Horizontal component = 26 cos 60
= 13 m /s
Resultant of two velocities
= √ 13²+ 16.568²
= 21 m /s