1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VashaNatasha [74]
2 years ago
12

SCIENCE/// What or who can best reduce negative impacts of disasters

Chemistry
2 answers:
Ivahew [28]2 years ago
8 0

Answer:

I don't think so that there is anything that can reduce negative impact of disaster.

STatiana [176]2 years ago
5 0

Answer:

it damage our home,field

You might be interested in
Choose the answer that best completes the following statement: When an aluminum atom reacts so as to attain a noble gas electron
boyakko [2]

The options

Select one:

a. a 3- ion forms.

b. the noble gas configuration of argon is achieved.

c. the result is a configuration of 1s2 2s2 2p6.

d. the atom gains five electrons.

Answer:

c. the result is a configuration of 1s2 2s2 2p6.

Explanation:

Aluminium atom has atomic number of 13 , hence the number of electron is 13 for a neutral atom of aluminium. When aluminium atom reacts with other elements it usually gives out three electron to attain the octet configuration.

The cation representation of aluminium is Al3+ because it has loss three electron to attain the octet rule. Aluminium will be left with 10 electrons after losing 3 of it electrons. The electronic configuration will be represented as follows after losing three electrons;

1S² 2S² 2P∧6 .

At this stage the octet rule has been achieved as it will be represented as

2  8.  The first energy shell now contains two electron and the second energy shell contains 8 electrons.

The configuration of  Neon has been formed in the process.

4 0
3 years ago
g A radioactive isotope of mercury, 197Hg, decays to gold, 197Au, with a disintegration constant of 0.0108hrs.-1. What % of the
weqwewe [10]

Answer:

7.49% of Mercury

Explanation:

Let N₀ represent the original amount.

Let N represent the amount after 10 days.

From the question given above, the following data were obtained:

Rate of disintegration (K) = 0.0108 h¯¹

Time (t) = 10 days

Percentage of Mercury remaining =?

Next, we shall convert 10 days to hours. This can be obtained as follow:

1 day = 24 h

Therefore,

10 days = 10 day × 24 h / 1 day

10 days = 240 h

Thus, 10 days is equivalent to 240 h.

Finally, we shall determine the percentage of Mercury remaining as follow:

Rate of disintegration (K) = 0.0108 h¯¹

Time (t) = 10 days

Percentage of Mercury remaining =?

Log (N₀/N) = kt /2.303

Log (N₀/N) = 0.0108 × 240 /2.303

Log (N₀/N) = 2.592 / 2.303

Log (N₀/N) = 1.1255

Take the anti log of 1.1255

N₀/N = anti log 1.1255

N₀/N = 13.3506

Invert the above expression

N/N₀ = 1/13.3506

N/N₀ = 0.0749

Multiply by 100 to express in percent.

N/N₀ = 0.0749 × 100

N/N₀ = 7.49%

Thus, 7.49% of Mercury will be remaining after 10 days

5 0
2 years ago
The formation of SO3 from SO2 and O2 is an intermediate step in the manufacture of sulfuric acid, and it is also responsible for
jeka57 [31]

Answer:

118.22 atm

Explanation:

2SO₂(g) + O₂(g) ⇌ 2SO₃(g)      

KP = 0.13 = \frac{p(SO_{3})^{2}}{p(SO_{2})^{2}p(O_{2})}

Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.

  • With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
  • With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.

The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:

  • XSO₂ = 0.58/3.29 = 0.176
  • XO₂ = 1.29/3.29 = 0.392
  • XSO₃ = 1.42/3.29 = 0.432

The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.

  • p(SO₂) = 0.176 * PT
  • p(O₂) = 0.392 * PT
  • p(SO₃) = 0.432 * PT

Rewriting KP and solving for PT:

\frac{p(SO_{3})^{2}}{p(SO_{2})^{2}p(O_{2})}=0.13\\\frac{(0.432*P_{T})^{2}}{(0.176*P_{T})^{2}(0.392*P_{T})} =0.13\\\frac{0.1866*P_{T}^{2}}{0.0121*P_{T}^{3}} =0.13\\\frac{15.369}{P_{T}}=0.13\\P_{T}=118.22 atm

5 0
3 years ago
How is genetic information is the same as a plum tree.
shutvik [7]

Answer:

This work was done in the European plum (Prunus domestica). The gene for PPV coat protein was separated from the PPV virus and inserted into the plum DNA, which was then regenerated and grown into complete plum trees. These trees now had the additional gene in their DNA and became resistant to PPV.

4 0
3 years ago
What toupee of matter is oxygen
Aleksandr [31]

All matter is made from atoms with the configuration of the atom, the number of protons, neutrons, and electrons, determining the kind of matter present (oxygen, lead, silver, neon ...). Every substance has a unique number of protons, neutrons, and electrons. Oxygen, for example, has 8 protons, 8 neutrons, and 8 electrons. Individual atoms can combine with other atoms to form molecules. Water molecules contain two atoms of hydrogen H and one atom of oxygen O and is chemically called H2O. Oxygen and nitrogen, which are the major components of air, occur in nature as diatomic (two atom) molecules. Regardless of the type of molecule, matter normally exists as either a solid, a liquid, or a gas. We call this property of matter the phase of the matter. The three normal phases of matter have unique characteristics which are listed on the slide.

Solid

In the solid phase the molecules are closely bound to one another by molecular forces. A solid holds its shape and the volume of a solid is fixed by the shape of the solid.

Liquid

In the liquid phase the molecular forces are weaker than in a solid. A liquid will take the shape of its container with a free surface in a gravitational field. In microgravity, a liquid forms a ball inside a free surface. Regardless of gravity, a liquid has a fixed volume.

Gas

In the gas phase the molecular forces are very weak. A gas fills its container, taking both the shape and the volume of the container.

Fluids (Liquids and Gases)

Liquids and gases are called fluids because they can be made to flow, or move. In any fluid, the molecules themselves are in constant, random motion, colliding with each other and with the walls of any container. The motion of fluids and the reaction to external forces are described by the Navier-Stokes Equations, which express a conservation of mass, momentum, and energy. The motion of solids and the reaction to external forces are described by Newton's Laws of Motion.

Any substance can occur in any phase. Under standard atmospheric conditions, water exists as a liquid. But if we lower the temperature below 0 degrees Celsius, or 32 degrees Fahrenheit, water changes its phase into a solid called ice. Similarly, if we heat a volume of water above 100 degrees Celsius, or 212 degrees Fahrenheit, water changes its phase into a gas called water vapor. Changes in the phase of matter are physical changes, not chemical changes. A molecule of water vapor has the same chemical composition, H2O, as a molecule of liquid water or a molecule of ice.

When studying gases , we can investigate the motions and interactions of individual molecules, or we can investigate the large scale action of the gas as a whole. Scientists refer to the large scale motion of the gas as the macro scale and the individual molecular motions as the micro scale. Some phenomenon are easier to understand and explain based on the macro scale, while other phenomenon are more easily explained on the micro scale. Macro scale investigations are based on things that we can easily observe and measure. But micro scale investigations are based on rather simple theories because we cannot actually observe an individual gas molecule in motion. Macro scale and micro scale investigations are just two views of the same thing.

Plasma - the "fourth phase"

The three normal phases of matter listed on the slide have been known for many years and studied in physics and chemistry classes. In recent times, we have begun to study matter at the very high temperatures and pressures which typically occur on the Sun, or during re-entry from space. Under these conditions, the atoms themselves begin to break down; electrons are stripped from their orbit around the nucleus leaving a positively charged ion behind. The resulting mixture of neutral atoms, free electrons, and charged ions is called a plasma. A plasma has some unique qualities that causes scientists to label it a "fourth phase" of matter. A plasma is a fluid, like a liquid or gas, but because of the charged particles present in a plasma, it responds to and generates electro-magnetic forces. There are fluid dynamic equations, called the Boltzman equations, which include the electro-magnetic forces with the normal fluid forces of the Navier-Stokes equations. NASA is currently doing research into the use of plasmas for an ion propulsion system.

3 0
2 years ago
Other questions:
  • If 15.60 g of a hydrated compound is heated in an oven for several hours, its mass drops to 8.63 g. Assuming that the reduction
    12·2 answers
  • What is the pH of a 2.0 x 10^-4 M solution of nitric acid (HNO3)
    11·2 answers
  • How many regions are in the electromagnetic spectrum?
    15·1 answer
  • A strong acid OR base is one that:
    12·1 answer
  • The earth is made up of?
    8·1 answer
  • How do you explain density column?
    8·1 answer
  • How many grams of sodium carbonate contain 1.773 × 1017 carbon atoms
    12·1 answer
  • If one mole of a substance has a mass of 56.0 g, what is the mass of 11 nanomoles of the substance? Express your answer in nanog
    13·1 answer
  • What are four signs a chemical reaction has taken place?
    8·1 answer
  • Which of the following molecules are considered inorganic?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!