Answer:
Explanation:
2 HCl(g) + Mg(s) → MgCl₂(s) + H₂(g)
Let's calculate the quantity of mole of produced hydrogen with the Ideal Gases Law
P . V = n . R .T
2.19 atm . 6.82L = n . 0.082 . 308K
(2.19 atm . 6.82L) / (0.082 . 308K) = n
0.591 mol = n
1 mol of H₂ gas came from 2 mol of hydrochloric, so, 0.591 mol came from the double of mole
0.591 .2 = 1.182 mole of acid.
Molar mass of HCl = 36.45 g/m
1.182 mole are (36.45 g/m . 1.182g ) contained in 43.1 g
Density HCl = HCl mass / HCl volume
0,118 g/mL = 43.1 g / HCl volume
43.1 g / 0.118 g/mL = 365.3 mL (HCl volume)
D. All of the answers are true
Answer:
Answer: B. Water condenses to form clouds.
Explanation:
When the moisture condenses, this results in the release of energy. The energy causes the air to be warm and results in the rise of air in the upper atmosphere. This process results in the instability in the atmosphere and cumulonimbus clouds are formed. These clouds support lightening during a thunderstorm.
Answer: Rate of decomposition of acetaldehyde in a solution is 
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
For a reaction : 
![Rate=k[A]^x](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex)
k= rate constant
x = order of the reaction = 2


Thus rate of decomposition of acetaldehyde in a solution is