Answer:
Density independent factor
Explanation:
in dense areas where people livein very close and tight spaces
Answer: 19 dollar fortnite card Explanation:who wants it
Answer:
A. It would float with about 80% of the cube below the surface of the water and 20% above the surface.
Explanation:
The choice that best describes what happens to cube of the given density value is that it would float with about 80% of the cube would be below the surface of the water and 20% above the surface.
Density is the mass per unit volume of a substance. The more mass a body has relative to volume, the great it's density. In short, density is directly proportional to mass and inversely related to volume.
The density of water is 1g/mL
If the density of the cube were to be the same with that of water, the substance will just mix up with water .
Here the density is less than that of water.
The density is 0.2g/mL
Therefore, 20% will stay afloat and 80% will be below the surface of the water.
Here we have to calculate the amount of
ion present in the sample.
In the sample solution 0.122g of
ion is present.
The reaction happens on addition of excess BaCl₂ in a sample solution of potassium sulfate (K₂SO₄) and sodium sulfate [(Na)₂SO₄] can be written as-
K₂SO₄ = 2K⁺ + 
(Na)₂SO₄=2Na⁺ + 
Thus, BaCl₂+
= BaSO₄↓ + 2Cl⁻ .
(Na)₂SO₄ and K₂SO₄ is highly soluble in water and the precipitation or the filtrate is due to the BaSO₄ only. As a precipitation appears due to addition of excess BaCl₂ thus the total amount of
ion is precipitated in this reaction.
The precipitate i.e. barium sulfate (BaSO₄)is formed in the reaction which have the mass 0.298g.
Now the molecular weight of BaSO₄ is 233.3 g/mol.
We know the molecular weight of sulfate ion (
) is 96.06 g/mol. Thus in 1 mole of BaSO₄ 96.06 g of
ion is present.
Or. we may write in 233.3 g of BaSO₄ 96.06 g of
ion is present. So in 1 g of BaSO₄
g of
ion is present.
Or, in 0.298 g of the filtered mass (0.298×0.411)=0.122g of
ion is present.