Answer: You need to wait at least 6.4 hours to eat the ribs.
t ≥ 6.4 hours.
Step-by-step explanation:
The initial temperature is 40°F, and it increases by 25% each hour.
This means that during hour 0 the temperature is 40° F
after the first hour, at h = 1h we have an increase of 25%, this means that the new temperature is:
T = 40° F + 0.25*40° F = 1.25*40° F
after another hour we have another increase of 25%, the temperature now is:
T = (1.25*40° F) + 0.25*(1.25*40° F) = (40° F)*(1.25)^2
Now, we can model the temperature at the hour h as:
T(h) = (40°f)*1.25^h
now we want to find the number of hours needed to get the temperature equal to 165°F. which is the minimum temperature that the ribs need to reach in order to be safe to eaten.
So we have:
(40°f)*1.25^h = 165° F
1.25^h = 165/40 = 4.125
h = ln(4.125)/ln(1.25) = 6.4 hours.
then the inequality is:
t ≥ 6.4 hours.
Explanation:
x + 3y = 2
<u>Converting it to slope intercept form</u>:
y = mx + b [where m is slope, b is y-intercept]
<u>Make y the subject</u>:




<u>which reveals slope</u>:

Answer:
The GCF for the numerical part is 2
Step-by-step explanation:
6x^2y^2-8xy^2+10xy
It contains both numbers and variables, there are two steps to find the GCF(HCF).
1). Find the GCF for the numerical part 6, -8,10
2). Find the GCF for the variable part x^2,y^2,x^1,y^2,x^1,y^3
3).Multiply the values together.
Find the common factors for the numerical part:
6,-8,10
Factors of 6
6: 1,2,3,6
Factors of -8
-8: -8,-4,-2,-1,1,2,4,8
Factors of 10
10:1,2,5,10
Common factors of 6,-8, 10 are 1,2
The GCF Numerical=2
The GCF Variable= xy^2
Multiply the GCF of the numerical part 2 and the GCF of the variable part xy^2, and you'll get 2xy^2