Answer:
B. They bind to carrier proteins in order to be transported in the blood to
their target cells.
Explanation:
Steroid hormones are belongs to the class of chemical compound called steroid. Steroid hormones are majorly secreted by three glands - ovaries, testes and adrenal cortex.
Steroid hormones are released in the blood and are allowed to bind to the specific carrier proteins such as corticosteroid-binding globulin and albumin which helps them to carry to the target cells for the functioning.
The steroid hormone binds to receptor proteins in the target cell and not in the plasma membrane
Hence, the correct answer is "B. They bind to carrier proteins in order to be transported in the blood to their target cells."
Answer:
The equilibrium is shifted to the formation of OH⁻.
Explanation:
AH + OH⁻ ⇄ A⁻ + H₂O
At the equivalence point, the acid AH has entirely been converted to A⁻, which is its conjugated base. This causes the equilibrium to shif to consume the excess of A⁻, which leads to production of OH⁻. This is why, at the equivalence point, the pH is larger than 7.
Answer:
The equilibrium concentration of hydrogen gas is 0.0010 M.
Explanation:
The equilibrium constant of the reaction =
}
Moles of hydrogen sulfide = 0.31 mol
Volume of the container = 4.1 L
![[concentration]=\frac{moles}{volume (L)}](https://tex.z-dn.net/?f=%5Bconcentration%5D%3D%5Cfrac%7Bmoles%7D%7Bvolume%20%28L%29%7D)
![[H_2S]=\frac{0.31 mol}{4.1 L}=0.076 M](https://tex.z-dn.net/?f=%5BH_2S%5D%3D%5Cfrac%7B0.31%20mol%7D%7B4.1%20L%7D%3D0.076%20M)

Initially
0.076 M
At equilibrium
(0.076-2x) 2x x
The expression of an equilibrium constant :
![K_c=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)

Solving for x:
x = 0.00051
The equilibrium concentration of hydrogen gas:
![[H_2]=2x=2\times 0.00051 M=0.0010 M](https://tex.z-dn.net/?f=%5BH_2%5D%3D2x%3D2%5Ctimes%200.00051%20M%3D0.0010%20M)
Answer:
Six C atoms (C₆); five H atoms (H₅); one N atom (N); no O atoms
Explanation:
The rule of 13 states that the formula of a compound is a multiple n of 13 (the molar mass of CH) plus a remainder r.
MF = CₙHₙ₊ᵣ
Y has a molecular mass of 91 u
91/13 =7r0
The formula can't be C₇H₇ because a hydrocarbon must have an even number of H atoms,
The odd mass and the odd number of H atoms make it reasonable to add an N atom and subtract CH₂ (CH₂ = 14):
C₇H₇ + N - CH₂ = C₆H₅N
Check:
6C = 6 × 12.000 = 72.000 u
5H = 5 × 1.008 = 5.040
1N = 1 × 14.003 = <u>14.003 </u>
TOTAL = 91.043 u
This is excellent agreement with the observed mass of 91.0425 u.
There are six C atoms (C₆)
There are five H atoms (H₅)
There is one N atom (N)
There are no O atoms.