Molar solubility<span> is the number of moles of a substance (the solute) that can be dissolved per liter of solution before the solution becomes saturated. We calculate as follows:
</span>3Cu2+ + 2(AsO4)3-<span> = Cu3(AsO4)2
</span>
7.6 x 10^-36 = (3x^3)(2x^2)
x = 6.62 x 10^-8 M
The fridge part can, just not the freezer, I think.
Answer:
They are eukaryotic, which means they have a nucleus. Most have mitochondria
Answer:
0.297 °C
Step-by-step explanation:
The formula for the <em>freezing point depression </em>ΔT_f is
ΔT_f = iK_f·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For glucose,
glucose(s) ⟶ glucose(aq)
1 mole glucose ⟶ 1 mol particles i = 1
Data:
Mass of glucose = 10.20 g
Mass of water = 355 g
ΔT_f = 1.86 °C·kg·mol⁻¹
Calculations:
(a) <em>Moles of glucose
</em>
n = 10.20 g × (1 mol/180.16 g)
= 0.056 62 mol
(b) <em>Kilograms of water
</em>
m = 355 g × (1 kg/1000 g)
= 0.355 kg
(c) <em>Molal concentration
</em>
b = moles of solute/kilograms of solvent
= 0.056 62 mol/0.355 kg
= 0.1595 mol·kg⁻¹
(d) <em>Freezing point depression
</em>
ΔT_f = 1 × 1.86 × 0.1595
= 0.297 °C
Answer:
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases. Gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
Explanation: