One of the equations of gravity is this:

Where v = final velocity which is 7m/s
u = initial velocity which is 0 for objects falling from a height
g = acceleration due to gravity and it is approximately 10m/s^2. It's a constant so pretty much remember this number. It's positive since the work being done is caused by gravity (in other words, it's falling down). It can also be negative if the work being down is against gravity (in other words, it's going up)
h = height of object
Substitute for the values and you should have something like this



It’s biotic because it’s a living thing
Abiotic would be like a rock non living things
Answer:Biotic
Mass is how heavy is it, weight is the size both are the same
I notice that even though we're working with frames of reference
here, you never said which frame the '5 km/hr' is measured in.
In fact ! You didn't even say which frame the '12 km/hr' of his
bike is measured in.
So there are several different ways this could go. I'll do it the way
I THINK you meant it, but that doesn't guarantee anything.
-- Simon is riding his bike at 12 km/hr relative to the sidewalk,
away from Keesha.
-- He throws a ball at Keesha, at 5 km/hr relative to his own face.
-- Keesha sees the ball approaching her at (12 - 5) = 7 km/hr
relative to the ground and to her.
Given,
A player kicks a soccer hits at an angle of 30° at a speed of 26 m/s
We can resolute the trajectory of soccer into horizontal and vertical components.(Please see the attached file)
We can have,
Horizontal velocity component of ball= 26cos(30°) = 26×(√3÷2) = 22.51 m/s
And vertical velocity component of ball = 26sin(26°) = 26×(1÷2) = 13 m/s