Answer:
0.027 J
Explanation:
The formula of the potential energy in electrostatic (U) is

The values given in the question are
Charge : q = 
Electric Field strength : E = 
Distance : d is 0.030 m
Insert in the formula , will give us

Further solving it

Which is the required answer.
Thanks
We will find the mass from
mass = density x volume
We are told the density and must find the volume from the dimensions given
the volume of the washer will be the area x thickness (remembering to convert all measurements to meters)
if the washer had no hole, its area would be pi (0.0225m)^2 (remember to convert to meters and to use radius)
the area of the hole is pi(0.00625m)^2
so the area of the washer is pi[(0.0225m)^2 - (0.00625m)^2] = 1.5x10^-3 m
the volume of the washer is 1.5x10^-3 m x 1.5x10^-3 m = 2.25x10^-6 m^3 (the thickness of the washer is 1.5 mm = 1.5x10^-3m)
thus, the mass of the washer = 8598kg/m^3 x 2.25x10^-6m^3 = 0.0189kg = 18.9 grams
Explanation:
<h3>p = mv</h3>
- <em>p</em> denotes momentum
- <em>m</em> denotes mass
- <em>v</em> denotes velocity
→ p = 3 kg × 3 m/s
→ <u>p</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>kg</u><u>.</u><u>m</u><u>/</u><u>s</u>
<u>Option</u><u> </u><u>D</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u>.</u>
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2