Answer:
Explanation:
Take sum of torques at the point the step touches the wheel, that eliminates two torques
Σ
Since we are looking for when the wheel just starts to rise up N-> 0 so no torque due to normal force
The perpendicular lever arm for the F force is R-h
And the T of gravity according to the image
Σ
Answer:
True
Explanation:
When a satellite is orbiting the earth, the centripetal force is balanced by the gravitational force as :
...........(1)
Where
M is the mass of the earth
m is the mass of the planet
From equation (1), the speed of the satellite depends only on the mass of the earth and the orbital radius.
So, If a payload of material is added until it doubles the satellite's mass, the earth's pull of gravity on this satellite will double but the satellite's orbit will not be affected. It is true.
Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
Answer:
The woman's average velocity during the trip is 36.2 miles/hour.
Explanation:
Velocity can be define as the displacement of an object per time. It is a vector quantity, and measured in m/s.
i.e velocity =
From the given question,
Displacement =
=
=
= 425
The displacement of woman is 425 miles.
velocity =
= 36.1702 miles/hour
The woman's average velocity during the trip is 36.2 miles/hour.
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479