Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
Answer:
103.1 V
Explanation:
We are given that
Initial circumference=C=168 cm

Magnetic field,B=0.9 T
We have to find the magnitude of the emf induced in the loop after exactly time 8 s has passed since the circumference of the loop started to decrease.
Magnetic flux=
Circumference,C=

cm



When t=0



E=

t=8 s
B=0.9


This is due to earths location in the solar system. Earth is in the habitat zone or the Goldie locks zone, in this zone it's not too hot or not too cold for water to exist. Other planets in different star systems have liquid oceans due to them being in the habitat zone.
If an object's velocity is steadily increasing it means that the acceleration is constant at a certain value.
Choice A shows an acceleration of zero which would only be true if the object was not moving or if its velocity was not changing.
Choice B gives us a graph showing acceleration increasing over time and is therefore incorrect.
Choice C is correct because the acceleration is constant. Steadily increasing tells us that the acceleration is fixed at a certain value.
Choice D is incorrect an represents a constant negative acceleration. This would be the case if the object was steadily decreasing in velocity.
Answer:
More force
Explanation:
Pressure and force are related by the equation:

where
p is the pressure
F is the force
A is the area
We can re-arrange the equation as

In this problem, the pressure is kept the same (p' = p) while the area is increased. As we can see from the previous equation, the force applied is directly proportional to the area: therefore, a greater area means also a greater force.