1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
9

An object, when pushed with a net force F, has an acceleration of 4 m/s . Now twice the force is applied to an object that has f

our times the mass. Its acceleration will be 2 A. 1 m/s . 2 B. 2 m/s . 2 2 Which of the following pairs of acceleration of the blocks and tension in the rope is correct? A. Acceleration = 3.19 m/s2 and Tension = 702.5 N. B. Acceleration = 4.05 m/s2 and Tension = 297.5 N. C. Acceleration = 4.05 m/s2 and Tension = 702.5 N. D. Acceleration = 3.19 m/s2 and Tension = 297.5 N. C. 4 m/s D. 8 m/s E. None of the above.
Physics
1 answer:
hjlf3 years ago
8 0

Answer:

B. 2 m/s

B. Acceleration = 4.05 m/s² and Tension = 297.5 N.

Explanation:

A force is applied on a mass m whose acceleration is 4 m/s

Force = mass × acceleration

a = F/m = 4 m/s

4 m/s = F/m

F = 4 m/s (m)

If  Force of 2F is applied on a mass of 4m ; it acceleration is as follows:

2F/4 m = F/ 2m

4m/s (m) / 2m = 2 m/s

a = 2 m/s

2.

Given that

mass m_1 = 30 kg

mass m_2 = 50 kg

\mu = 0.1

From the question; we can arrive at two cases;

That :

m_{2} a _ \ {net} }= m_2g - T   ----- equation (1)

m_{1} a _ \ {net} }=  T - mg sin \theta  - F ---- equation (2)

50 a = 50 g - T

30 a = T - 30 g sin 30 - 4 × 30 g cos 30

By summation

80 a =[ 50  - 30 * \frac{1}{2} - 0.1 *30* \frac{\sqrt{3}}{2}]g

80 a = 32. 4 × 10 m/s ²  (using g as 10m/s²)

80 a = 324 m/s ²

a = 324/80

a = 4.05 m/s²

From equation , replace a with 4.05

50 × 4.05 = 50 × 10 - T

T = 500 -202.5

T =297.5 N

You might be interested in
Name 3 renewable energy resources
Ad libitum [116K]
Solar energy, wind energy, hydro energy
7 0
2 years ago
Read 2 more answers
A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
kow [346]

Answer:

q = - 93.334 nC

Explanation:

GIVEN DATA:

Radius of ring  73 cm

charge on ring 610 nC

ELECTRIC FIELD p FROM CENTRE IS AT 70 CM

E  =  2000 N/C

Electric field due tor ring is guiven as

E = \frac{KQx}{[x^2+ R^2]^{3/2}}

E = \frac{9\time 10^9 \times 610\times 10^[-9} 0.70}{(0.70^2 + 0.73^2)^{3/2}}

E1 = 3714.672 N/C

electric field due to point charge q

E  =\frac[kq}{x^2}

E = \frac{9\times 10^9 \times q}{0.70^2}

E2 = 1.837\times 10^{10}\times q

now the eelctric charge at point P is

E = E1 + E22000 =  3714.672 + 1.837\times 10[10} \times q

solving for q

q = - 93.334 nC

7 0
3 years ago
A car is running at the speed of 45km/hr see a child 25 meter ahead and suddenly apllies a brakes. If the retradation of the car
kenny6666 [7]

Answer:

The car stops in 7.78s and does not spare the child.

Explanation:

In order to know if the car stops before the distance to the child, you take into account the following equation:

x=x_o+v_ot-\frac{1}{2}at^2        (1)

vo: initial speed of the car = 45km/h

a: deceleration of the car = 2 m/s^2

t: time

xo: initial distance to the child = 25m

x: final distance to the child = 0m

It is necessary that the solution of the equation (1) for time t are real.

You first convert the initial speed to m/s, then replace the values of the parameters and solve the quadratic polynomial for t:

45\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=12.5\frac{m}{s}

0=25+12.5t-2t^2\\\\2t^2-12.5t-25=0\\\\t_{1,2}=\frac{-(-12.5)\pm \sqrt{(-12.5)^2-4(2)(-25)}}{2(2)}\\\\t_{1,2}=\frac{12.25\pm 18.87}{4}\\\\t_1=7.78s\\\\t_2=-1.65s

You take the first value t1 because it has physical meaning.

The solution for t is real, then, the car stops in 7.78s and does not spare the child.

4 0
3 years ago
Which of the following is an exercise myth?
Margaret [11]
The answere is No pain, no gain
8 0
3 years ago
Read 2 more answers
The Ha line of the Balmer series is emitted in the transition from n-3 to n 2. Compute the wavelength of this line for H and 2H.
Citrus2011 [14]

Explanation:

According to Rydberg's formula, the wavelength of the balmer series is given by:

\frac{1}{\lambda}=R(\frac{1}{2^2}-\frac{1}{3^2})

R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:

R=\frac{R_{\infty}}{(1+\frac{m_e}{M})}

Here, R_{\infty} is the "general" Rydberg constant, m_e is electron's mass and M is the mass of the atom nucleus

For hydrogen, we have, M=1.67*10^{-27}kg:

R_H=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{1.67*10^{-27}kg})}\\R_H=1.09677*10^7m^{-1}

Now, we calculate the wavelength for hydrogen:

\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm

For deuterium, we have M=2(1.67*10^{-27}kg):

R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm

5 0
3 years ago
Other questions:
  • A scientist must only base his or her conclusions on observable evidence from investigation
    13·1 answer
  • Which statement would be the best evidence that heat transfer through radiation has occurred and why? A) A pan gets hot on a sto
    10·2 answers
  • Newton’s third law of motion explains the two forces namely ‘action’ and ‘reaction’ coming into action when the two bodies are i
    9·2 answers
  • a bus carrying a band and all their equipment has an initial velocity of 14 m/s. it accelerates for 3seconds
    7·1 answer
  • Air at 38oC and 97% relative humidity is to be cooled to 14oC and fed into a plant area at a rate of 510 m3/min. Calculate the r
    6·1 answer
  • Anyone know the answer to this question?
    5·1 answer
  • The voltage across the secondary winding is 10,000 V, and the voltage across the primary winding is 25,000 V. If the primary win
    5·2 answers
  • A ball is thrown with a speed of 10 m/s at an angle of 65. which of the following statement describes the motion of the ball at
    11·2 answers
  • The inductance of a solenoid with 450 turns and a length of 24 cm is 7.3 mH. (a) What is the cross-sectional area of the solenoi
    5·1 answer
  • Andy described the functions of two human body organs and labeled them A and B. Look at the table and select the answer that cor
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!