The equilibrium condition allows finding the result for the force that the chair exerts on the student is:
- The reaction force that the chair exerts on the student's support is equal to the student's weight.
Newton's second law gives the relationship between force, mass and acceleration of bodies, in the special case that the acceleration is is zero equilibrium condition.
∑ F = 0
Where F is the external force.
The free body diagram is a diagram of the forces on bodies without the details of the shape of the body, in the attached we can see a diagram of the forces.
Let's analyze the force on the chair.
Let's analyze the forces on the student.
In conclusion using the equilibrium condition we can find the result for the force that the chair exerts on the student is:
- The reaction force that the chair exerts on the student's support is equal to the student's weight.
Learn more here: brainly.com/question/18117041
Total resultant velocity=5.11-3.27=1.84m/s
- m_1=61.4kg
- m_2=109kg
- v_1=1.84m/s
- v_2=?






Well, as the waves move it moves the rope as if its trying to take shape of it. Since the rope it light it will move along the ocean and the ocean will keep pushing up on the rope. (even without the waves the water is pushing the rope up so it can take its shape)
Maybe that'll help
Answer:
819.78 m
Explanation:
<u>Given:</u>
- OA = range of initial position of the airplane from the point of observation = 375 m
- OB = range of the final position of the airplane from the point of observation = 797 m
= angle of the initial position vector from the observation point = 
= angle of the final position vector from the observation point = 
= displacement vector from initial position to the final position
A diagram has been attached with the solution in order to clearly show the position of the plane.

Displacement vector of the airplane will be the shortest line joining the initial position of the airplane to the final position of the airplane which is given by:

The magnitude of the displacement vector = 
Hence, the magnitude of the displacement of the plane is 819.67 m during the period of observation.
Answer: the divergent one goes where it looks like there a crack because when you think about divergent it means dividing like seperating.(igneous rock) is where the divegent one goes.
the one that is no plate boundary is sedimentary rock and it occurs by because there is nothing there for it todo there
Explanation: