Answer:
The velocity of the shell when the cannon is unbolted is 500.14 m/s
Explanation:
Given;
mass of cannon, m₁ = 6430 kg
mass of shell, m₂ = 73.8-kg
initial velocity of the shell, u₂ = 503 m/s
Initial kinetic energy of the shell; when the cannon is rigidly bolted to the earth.
K.E = ¹/₂mv²
K.E = ¹/₂ (73.8)(503)²
K.E = 9336032.1 J
When the cannon is unbolted from the earth, we apply the principle of conservation of linear momentum and kinetic energy
change in initial momentum = change in momentum after
0 = m₁u₁ - m₂u₂
m₁v₁ = m₂v₂
where;
v₁ is the final velocity of cannon
v₂ is the final velocity of shell

Apply the principle of conservation kinetic energy

Therefore, the velocity of the shell when the cannon is unbolted is 500.14 m/s
Below are the answers:
(a) Ep = mass x gravitational acceleration x height
<span>= 2kg x 9.8ms-2 x 3m </span>
<span>= 58.8J </span>
<span>(b) F = mg </span>
<span>= 2kg x 9.8ms-2 </span>
<span>= 19.6N </span>
<span>W = Fd </span>
<span>= 19.6N x 3m </span>
<span>= 58.8J
</span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Answer: Option A; 9.8 m/s^2
Explanation:
When an object is in the air, and there is no air resistance acting on the object, the only force that will act on the object is the gravitational force (on the vertical axis).
Then, if the only force acting on the object is the gravitational force, the acceleration of the object will be equal to the gravitational acceleration.
We know that the gravitational acceleration is equal to:
g = 9.8m/s^2
Then the acceleration on the vertical axis will be equal to:
a(t) = 9.8m/s^2
The correct option is the first one:
A. 9.8 m/s^2
Answer:
its cementation i got it correct
Explanation: