Well, it also depends on the height... but say if they were 5'3" and 291 pounds...
their BMI would be
51.55
3. The sum of the players' momenta is equal to the momentum of the players when they're stuck together:
(75 kg) (6 m/s) + (80 kg) (-4 m/s) = (75 kg + 80 kg) v
where v is the velocity of the combined players. Solve for v :
450 kg•m/s - 320 kg•m/s = (155 kg) v
v = (130 kg•m/s) / (155 kg)
v ≈ 0.84 m/s
4. The total momentum of the bowling balls prior to collision is conserved and is the same after their collision, so that
(6 kg) (5.1 m/s) + (4 kg) (-1.3 m/s) = (6 kg) (1.5 m/s) + (4 kg) v
where v is the new velocity of the 4-kg ball. Solve for v :
30.6 kg•m/s - 5.2 kg•m/s = 9 kg•m/s + (4 kg) v
v = (16.4 kg•m/s) / (4 kg)
v = 4.1 m/s
Answer: v =
Explanation: q = magnitude of electronic charge =
mass of an electronic charge =
V= potential difference = 4V
v = velocity of electron
by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.
kinetic energy = , potential energy = qV
hence,
The charge of the copper nucleus is 29 times the charge of one proton:
the charge of the electron is
and their separation is
The magnitude of the electrostatic force between them is given by:
where
is the Coulomb's constant. If we substitute the numbers, we find (we can ignore the negative sign of the electron charge, since we are interested only in the magnitude of the force)
A haha snake e enajene. skskskksksks and