1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
12

6(7x=8) + 6 = -168 solve variable

Mathematics
1 answer:
Rus_ich [418]3 years ago
5 0

Answer:

1/3 ?

Step-by-step explanation:

im sorry its probably wrong, delete this if it is.

You might be interested in
Find the 10th term of the sequence 1,10,19,28,...
Rainbow [258]
For the first one the nth term is 9n - 8 so the 10th term is 9x10 - 8 = 90-8 = 82

For the second one the nth term is ⅓n + ⅓ so the 11th term is ⅓x11 +⅓ = 3.9999 = 4
5 0
3 years ago
A cab company offers a special discount on fare to senior citizens. The following expression models the average amount a cab dri
steposvetlana [31]

Answer:

  D. The constant 250 represents the average collection when no seniors ride.

Step-by-step explanation:

A -- the entire expression represents the driver's pay, not just the constant 250.

B -- collections continue to increase as x goes up, so 250 is the minimum, not the maximum.

C -- x is the number of seniors; 250 is in units of collections (dollars?), not numbers of seniors.

D -- indeed, 250 is the "y-intercept" of the expression, hence the collection when no seniors ride.

4 0
3 years ago
Use calculus to find the largest possible area for a rectangular field that can be enclosed with a fence that is 500 meters long
rewona [7]
Let x and y be the sides of the rectangle. The perimeter is given to be 500m, so we are maximizing the area function A(x,y)=xy subject to the constraint 2x+2y=500.

From the constraint, we find

2x+2y=500\implies x+y=250\implies y=250-x

so we can write the area function independently of y:

A(x,y)=\hat A(x)=x(250-x)=250x-x^2

Differentiating and setting equal to zero, we find one critical point:

\dfrac{\mathrm d\hat A(x)}{\mathrm dx}=250-2x=0\implies x=125

which means y=250-125=125, so in fact the largest area is achieved with a square fence that surrounds an area of A(125,125)=125^2=15625\text{ m}^2.
7 0
3 years ago
15.5 × [(2 × 2.4) + 3.2] – 24
scZoUnD [109]

Answer:100

Step-by-step explanation:

2 x 2.4=4.8

4.8+3.2=8.0

15.5 x 8.0=124.00

124.00-24=

100

6 0
3 years ago
Integrate sin^-1(x) dx<br><br> please explain how to do it aswell ...?
Lynna [10]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2264253

_______________


Evaluate the indefinite integral:

\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx\qquad\quad\checkmark}


Trigonometric substitution:

\mathsf{\theta=sin^{-1}(x)\qquad\qquad\dfrac{\pi}{2}\le \theta\le \dfrac{\pi}{2}}


then,

\begin{array}{lcl} \mathsf{x=sin\,\theta}&\quad\Rightarrow\quad&\mathsf{dx=cos\,\theta\,d\theta\qquad\checkmark}\\\\\\ &&\mathsf{x^2=sin^2\,\theta}\\\\ &&\mathsf{x^2=1-cos^2\,\theta}\\\\ &&\mathsf{cos^2\,\theta=1-x^2}\\\\ &&\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\checkmark}\\\\\\ &&\textsf{because }\mathsf{cos\,\theta}\textsf{ is positive for }\mathsf{\theta\in \left[\dfrac{\pi}{2},\,\dfrac{\pi}{2}\right].} \end{array}


So the integral \mathsf{(ii)} becomes

\mathsf{=\displaystyle\int\! \theta\,cos\,\theta\,d\theta\qquad\quad(ii)}


Integrate \mathsf{(ii)} by parts:

\begin{array}{lcl} \mathsf{u=\theta}&\quad\Rightarrow\quad&\mathsf{du=d\theta}\\\\ \mathsf{dv=cos\,\theta\,d\theta}&\quad\Leftarrow\quad&\mathsf{v=sin\,\theta} \end{array}\\\\\\\\ \mathsf{\displaystyle\int\!u\,dv=u\cdot v-\int\!v\,du}\\\\\\ \mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta-\int\!sin\,\theta\,d\theta}\\\\\\ \mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta-(-cos\,\theta)+C}

\mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta+cos\,\theta+C}


Substitute back for the variable x, and you get

\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx=sin^{-1}(x)\cdot x+\sqrt{1-x^2}+C}\\\\\\\\ \therefore~~\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx=x\cdot\,sin^{-1}(x)+\sqrt{1-x^2}+C\qquad\quad\checkmark}


I hope this helps. =)


Tags:  <em>integral inverse sine function angle arcsin sine sin trigonometric trig substitution differential integral calculus</em>

6 0
3 years ago
Other questions:
  • Describe the number of faces and thier shapes
    8·1 answer
  • H(t) = -t + 3; Find h(-5)
    12·2 answers
  • Leadiness Assessment 3
    9·1 answer
  • Helppppppppppppppppppppppppppppppppppp
    14·1 answer
  • Use a special right triangle to write<br> tan 60° in simplest radical form.
    14·2 answers
  • How do you solve it?
    9·1 answer
  • Giving brainliest!!!!!!!!!!
    6·2 answers
  • Case cost $3.82 , unit cost $0.32,paper cost ,$0.03, condiment cost $0.02 what is the item total cost?
    14·1 answer
  • Equation: -5 3/4- 3 1/2 Please help meh. ​
    7·1 answer
  • Which of the following statements does not describe a characteristic of the line of best fit for a scatter plot?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!