Answer:
D. The Federal Reserve Bank can provide a short-term loan to banks
to prevent them from running out of money.
Explanation:
A bank run occurs when a large number of depositors withdraw their deposits simultaneously from a bank.
As the number of withdraws increases, the available cash in the bank decreases until a point that the bank can't give depositors their money.
In these situations, The Federal Reserve Bank acts as a lender of last resort that helps to reinforce the effect of deposit insurance, and to reassure bank customers that they will not lose their money.
A. The angle at which the arrow must be released to hit the bull's-eye is 20.7 °
B. The arrow will go over the branch.
<h3>A. How to determine the angle</h3>
- Range (R) = 74 m
- Initial velocity (u) = 33 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle (θ) = ?
R = u²Sine(2θ) / g
74 = 33² × Sine (2θ) / 9.8
Cross multiply
74 × 9.8 = 33² × Sine (2θ)
725.2 = 1098 × Sine (2θ)
Divide both sides by 1098
Sine (2θ) = 725.2 / 1098
Sine (2θ) = 0.6605
Take the inverse of sine
2θ = Sine⁻¹ 0.6605
2θ = 41.3
Divide both sides by 2
θ = 41.3 / 2
θ = 20.7 °
<h3>B. How to determine if the arrow will go over or under the branch</h3>
To determine if the arrow will go over or under the branch situated mid way, we shall determine the maximum height attained by the arrow. This can be obtained as follow:
- Initial velocity (u) = 33 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle (θ) = 20.7 °
- Maximum height (H) = ?
H = u²Sine²θ / 2g
H = [33² × (Sine 20.7)²] / (2 ×9.8)
H = 6.94 m
Thus, the maximum height attained by the arrow is 6.94 m which is greater than the height of the branch (i.e 3.50 m).
Therefore, we can conclude that the arrow will go over the branch
Learn more about projectile motion:
brainly.com/question/20326485
#SPJ1
Lol .. a what - a wave ? You just greeting somebody basically when your waving at someone I don’t really get the question but :) help it’s okay !
please give me brainlest!!
the answer is A.
From a balistics pendulum as an example, which is probably where you are at...
Triangles, L = 12m, x_0 = 1.6, we need to find the angle (theta)
sin (theta) = 1.6/12 = 0.1333....
theta = ArcSin(0.1333...) = 0.1337 rad
Then, this is the height that the mass vertically raises in it's arc
y_2 = L-L*cos(theta) = 0.107 m
use y_2 in a kinematic swing...
<span><span>v=sqrt(<span><span>2g<span>y_2)</span></span></span>=1.45m/s</span></span>