1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ahat [919]
3 years ago
12

True or false 19. Closed systems rely on feedback from outside of the system to operate.

Engineering
1 answer:
Furkat [3]3 years ago
6 0

Answer: True

Explanation: Closed loop relies on feedback from PNS to make modifications in the movement, open loop allows action in the absence of feedback, 2. ... Closed loop can change the initial commands, open loop can not change the initial commands.

You might be interested in
Which type of system is being researched to deliver power to several motors to drive multiple systems in vehicles?
qaws [65]

Answer:

pneumatic power system

Explanation:

pneumatic power can be used to quietly operate power windows, door locks, power mirrors, and much much more, also negative pressure pneumatics (vacuum) is used to control many engine and fuel systems

8 0
2 years ago
A piston–cylinder device containing carbon dioxide gas undergoes an isobaric process from 15 psia and 80°F to 170°F. Determine t
drek231 [11]

Answer:

See explanation

Explanation:

Given:

Initial pressure,

p

1

=

15

psia

Initial temperature,

T

1

=

80

∘

F

Final temperature,

T

2

=

200

∘

F

Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.

R

=

0.04513

Btu/lbm.R

C

v

=

0.158

Btu/lbm.R

Find the work done during the isobaric process.

w

1

−

2

=

p

(

v

2

−

v

1

)

=

R

(

T

2

−

T

1

)

=

0.04513

(

200

−

80

)

w

1

−

2

=

5.4156

Btu/lbm

Find the change in internal energy during process.

Δ

u

1

−

2

=

C

v

(

T

2

−

T

1

)

=

0.158

(

200

−

80

)

=

18.96

Btu/lbm

Find the heat transfer during the process using the first law of thermodynamics.

q

1

−

2

=

w

1

−

2

+

Δ

u

1

−

2

=

5.4156

+

18.96

q

1

−

2

=

24.38

Btu/lbm

7 0
3 years ago
Determine the angular acceleration of the uniform disk if (a) the rotational inertia of the disk is ignored and (b) the inertia
lukranit [14]

Answer:

α = 7.848 rad/s^2  ... Without disk inertia

α = 6.278 rad/s^2  .... With disk inertia

Explanation:

Given:-

- The mass of the disk, M = 5 kg

- The right hanging mass, mb = 4 kg

- The left hanging mass, ma = 6 kg

- The radius of the disk, r = 0.25 m

Find:-

Determine the angular acceleration of the uniform disk without and with considering the inertia of disk

Solution:-

- Assuming the inertia of the disk is negligible. The two masses ( A & B )  are hung over the disk in a pulley system. The disk is supported by a fixed support with hinge at the center of the disk.

- We will make a Free body diagram for each end of the rope/string ties to the masses A and B.

- The tension in the left and right string is considered to be ( T ).

- Apply newton's second law of motion for mass A and mass B.

                      ma*g - T = ma*a

                      T - mb*g = mb*a

Where,

* The tangential linear acceleration ( a ) with which the system of two masses assumed to be particles move with combined constant acceleration.

- g: The gravitational acceleration constant = 9.81 m/s^2

- Sum the two equations for both masses A and B:

                      g* ( ma - mb ) = ( ma + mb )*a

                      a =  g* ( ma - mb ) / ( ma + mb )

                      a = 9.81* ( 6 - 4 ) / ( 6 + 4 ) = 9.81 * ( 2 / 10 )

                      a = 1.962 m/s^2  

- The rope/string moves with linear acceleration of ( a ) which rotates the disk counter-clockwise in the direction of massive object A.

- The linear acceleration always acts tangent to the disk at a distance radius ( r ).

- For no slip conditions, the linear acceleration can be equated to tangential acceleration ( at ). The correlation between linear-rotational kinematics is given below :

                     a = at = 1.962 m/s^2

                     at = r*α      

Where,

           α: The angular acceleration of the object ( disk )

                    α = at / r

                    α = 1.962 / 0.25

                    α = 7.848 rad/s^2                                

- Take moments about the pivot O of the disk. Apply rotational dynamics conditions:

             

                Sum of moments ∑M = Iα

                 ( Ta - Tb )*r = Iα

- The moment about the pivots are due to masses A and B.

 

               Ta: The force in string due to mass A

               Tb: The force in string due to mass B

                I: The moment of inertia of disk = 0.5*M*r^2

                   ( ma*a - mb*a )*r = 0.5*M*r^2*α

                   α = ( ma*a - mb*a ) / ( 0.5*M*r )

                   α = ( 6*1.962 - 4*1.962 ) / ( 0.5*5*0.25 )

                   α = ( 3.924 ) / ( 0.625 )

                   α = 6.278 rad/s^2

6 0
3 years ago
Problem 2
mamaluj [8]

Answer:

susmtqjqmjttqmjtqmjtmqutq

Explanation:

bakaf

fjgjgi5j6leny4mjtqjmu5tjmmwtjmjtj

8 0
3 years ago
Consider two different versions of algorithm for finding gcd of two numbers (as given below), Estimate how many times faster it
juin [17]

Answer:

Explanation:

Step 1:

a) The formula for compute greatest advisor is

     gcd(m,n) = gcd (n,m mod n)

the gcd(31415,14142) by applying Euclid's algorithm is

    gcd(31,415,14,142) =gcd(14,142,3,131)

                                  =gcd=(3,131, 1,618)

                                   =gcd(1,618, 1,513)

                                   =gcd(1,513, 105)

                                   =gcd(105, 43)

                                    =gcd(43, 19)

                                     =gcd(19, 5)

                                      =gcd(5, 4)

                                      =gcd(4, 1)

                                      =gcd(1, 0)

                                      =1

STEP 2

b)  The number of comparison of given input with the algorithm based on  checking consecutive integers and Euclid's algorithm is

     The number of division using Euclid's algorithm =10 from part (a)

      The consecutive integer checking algorithm:

      The number of iterations =14,142 and 1 or 2 division of iteration.

        14,142 ∠= number of division∠ = 2*14,142

         Euclid's algorithm is faster by at least 14,142/10 =1400 times

          At most 2*14,142/10 =2800 times.

5 0
3 years ago
Other questions:
  • During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitu
    11·2 answers
  • What are 3 reasons why small businesses are an important part of the American economy?
    9·2 answers
  • A. For a 200g load acting vertically downwards at point B’, determine the axial load in members A’B’, B’C’, B’D’, C’D’ and C’E’.
    8·1 answer
  • Design a posttest-only experiment that would test each of the following causal claims. For each one, identify the study’s indepe
    13·1 answer
  • 6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
    14·1 answer
  • What is the command in the java script that receives data from the user
    10·1 answer
  • An automobile engine consumes fuel at a rate of 22 L/h and delivers 85 kW of power to the wheels. If the fuel has a heating valu
    8·2 answers
  • Q#3:(A)Supose we extend the circular flow mode to add imports and export copy the circular flow digram onto a sheet paper and th
    15·1 answer
  • 6.
    8·1 answer
  • In python, how would I randomize numbers and insert them into a file?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!