1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
3 years ago
6

The flowchart below shows the design steps required to build a working model.

Engineering
1 answer:
AlekseyPX3 years ago
4 0

Question:

1) test the model and analyze the results of the test

2) building the model and observing it

3) observing the model and reporting results

w

4) designing the model and drawing conclusions​

Answer:

The correct option is;

1) Test the model and analyze the results of the test

Explanation:

Based on the flowchart, a model improvement process involves the implementation of a process or model improvement cycle such as the Plan Do Study Act, PDSA cycle, however feedback to the process will be be gotten from testing the model and analyzing the results of the tests. When grey areas or aspects of the model are found that cause the system to malfunction are determined, steps should then be taken to improve the performance of the model.

You might be interested in
Which step in the engineering design phase is requiring concussion prevention from blows up to 40 mph an example of?
Charra [1.4K]

Answer:

Target your customers

Explanation:

took the test :)

6 0
3 years ago
What are the mechanical properties of a geotextile that are of most importance when using it as a separator in an unpaved road s
Alekssandra [29.7K]

hey thanks for the point's i really needed them.. Cheers!

adhrtftgHDSRFDdhrgdrgfsdhrgfa

6 0
3 years ago
You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(
Vsevolod [243]

Answer:

Output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Explanation:

Given:

dc gain A = 23.6 dB

Input signal V_{in} (t) = 0.18 \cos (2\pi (57000)t +18.3)

Now convert gain,

A = 10^{\frac{23.6}{20} } = 15.13

DC gain at frequency f = 0 is given by,

  A = \frac{V_{out} }{V_{in} }

V_{out} =AV_{in}

V_{out} = 15.13 \times   0.18 \cos (2\pi (57000)t +18.3)

At zero frequency above equation is written as,

V_{out} = 2.72 \times \cos 18.3

V_{out} = 2.72

Now we write output voltage as input voltage,

V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Therefore, output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

7 0
3 years ago
A 5-mm-thick stainless steel strip (k = 21 W/m•K, rho = 8000 kg/m3, and cp = 570 J/kg•K) is being heat treated as it moves throu
Drupady [299]

Answer:

The temperature of the strip as it exits the furnace is 819.15 °C

Explanation:

The characteristic length of the strip is given by;

L_c = \frac{V}{A} = \frac{LA}{2A} = \frac{5*10^{-3}}{2} = 0.0025 \ m

The Biot number is given as;

B_i = \frac{h L_c}{k}\\\\B_i = \frac{80*0.0025}{21} \\\\B_i = 0.00952

B_i < 0.1,  thus apply lumped system approximation to determine the constant time for the process;

\tau = \frac{\rho C_p V}{hA_s} = \frac{\rho C_p L_c}{h}\\\\\tau = \frac{8000* 570* 0.0025}{80}\\\\\tau = 142.5 s

The time for the heating process is given as;

t = \frac{d}{V} \\\\t = \frac{3 \ m}{0.01 \ m/s} = 300 s

Apply the lumped system approximation relation to determine the temperature of the strip as it exits the furnace;

T(t) = T_{ \infty} + (T_i -T_{\infty})e^{-t/ \tau}\\\\T(t) = 930 + (20 -930)e^{-300/ 142.5}\\\\T(t) = 930 + (-110.85)\\\\T_{(t)} = 819.15 \ ^0 C

Therefore, the temperature of the strip as it exits the furnace is 819.15 °C

5 0
3 years ago
A traffic flow has density 61 veh/km when the speed is 59 veh/hr. If a flow has a jam density of 122 veh/km, what is the maximum
antoniya [11.8K]

Since this traffic flow has a jam density of 122 veh/km, the maximum flow is equal to 3,599 veh/hr.

<u>Given the following data:</u>

  • Density = 61 veh/km.
  • Speed = 59 km/hr.
  • Jam density = 122 veh/km.

<h3>How to calculate the maximum flow.</h3>

According to Greenshield Model, maximum flow is given by this formula:

q_{max}=\frac{V_f \times K_i}{4}

<u>Where:</u>

  • V_f is the free flow speed.
  • K_i is the Jam density.

In order to calculate the free flow speed, we would use this formula:

V_f =2 V\\\\V_f =2\times 59\\\\V_f=118\;km/hr

Substituting the parameters into the model, we have:

q_{max}=\frac{118 \times 122}{4}\\\\q_{max}=\frac{14396}{4}

Max flow = 3,599 veh/hr.

Read more on traffic flow here: brainly.com/question/15236911

6 0
2 years ago
Other questions:
  • An equal-tangent sag vertical curve connects a 1% and 3% initial and final grades, respectively, and is designed for 70 mph. The
    12·1 answer
  • A hanging wire made of an alloy of nickel with diameter 0.19 cm is initially 2.8 m long. When a 59 kg mass is hung from it, the
    15·1 answer
  • Which of the following is the correct definition of mechanical energy?
    9·2 answers
  • Determine the Thevenin/Norton Equivalent Circuit with respect to the terminalsa,bas shown in the figure. (Here 1A is an independ
    11·1 answer
  • What is Euler's equation?
    6·1 answer
  • The manufacturer of a 1.5 V D flashlight battery says that the battery will deliver 9 mA for 40 continuous hours. During that ti
    11·1 answer
  • The acceleration of a point is given. a = 20 t m/s2 When t=0, s = 50 m and v = -8 m/s. What are the position and velocity of the
    13·1 answer
  • Describe the algorithm you use for looking up a person’s telephone number in the phone book. The input is person’s name; the out
    9·2 answers
  • The application of technology results in human-made things called
    9·1 answer
  • Is there a project idea, or invention that would be good for<br> my class.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!