Answer:
D.) Transfer input energy from the power source throughout the machine.
Explanation:
Since the complex abnormalities of energy efficiency is depicted by the autonomy within self-operating machines, the correct answer is D.
 
        
             
        
        
        
The number of trays that should be prepared if the owner wants a service level of at least 95% is; 7 trays
<h3>How to utilize z-score statistics?</h3>
We are given;
Mean; μ = 15
Standard Deviation; σ = 5
We are told that the distribution of demand score is a bell shaped distribution that is a normal distribution. 
Formula for z-score is;
z = (x' - μ)/σ
We want to find the value of x such that the probability is 0.95;
P(X > x) = P(z > (x - 15)/5) = 0.95
⇒ 1 -  P(z ≤ (x - 15)/5) = 0.95
Thus;
P(z ≤ (x - 15)/5) = 1 - 0.95
P(z ≤ (x - 15)/5) = 0.05
The value of z from the z-table of 0.05 is -1.645
Thus;
(x - 15)/5 = -1.645
x ≈ 7
Complete Question is;
A bakery wants to determine how many trays of doughnuts it should prepare each day. Demand is normal with a mean of 15 trays and standard deviation of 5 trays. If the owner wants a service level of at least 95%, how many trays should he prepare (rounded to the nearest whole tray)? Assume doughnuts have no salvage value after the day is complete. 6 5 4 7 unable to determine with the above information.
Read more about Z-score at; brainly.com/question/25638875
#SPJ1
 
        
             
        
        
        
Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data 
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here  thermodynamic equation that 
energy equation that is 

put here value with 
turbine is insulated so q = 0
so here 

solve we get 
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW
 
        
             
        
        
        
Answer:
See explanations for step by step procedures to get answer.
Explanation:
Given that;
Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III, and M0M0M_0. Enter positive value if the deflection is upward and negative value if the deflection is downward.