Answer: First, we determine the circumference of the Mars by the equation below.
C = 2πr
Substituting the known values,
C = 2(π)(3,397 km) = 6794π km
To determine the tangential speed, we divide the circumference calculated above by the time it takes for Mars to complete one rotation and that is,
tangential speed = 6794π km / 24.6 hours = 867.64 km/h
It's just in the name! Accurate data is helpful, and correct, but reproducible data is all of that, and is able to be given to other people through different sources! At least, that's what my understanding of them are. Hope it helps!
Generally, the length of the line will indicate how strong the force is. If you have two opposing forces and one is higher than the other, you would draw the line of the higher force visibly longer.
To solve this problem it is necessary to apply an energy balance equation in each of the states to assess what their respective relationship is.
By definition the energy balance is simply given by the change between the two states:

Our states are given by



In this way the energy balance for the states would be given by,



Therefore the states of energy would be
Lowest : 0.9eV
Middle :7.5eV
Highest: 8.4eV
Answer:
F=
Explanation:
The magnitude of force required to pull the lid off the box by air pressure.
We know that Pressure, P= Force(F)/Area(A)
Force, F= P×A
Given: A=
P=
.
Therefore, F=
.
F=