Im a jewish salesman wanting to know if you wanted to buy some jesus movies
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
Answer:
4.7 s
Explanation:
The complete question is presented in the attached image to this solution.
v(t) = 61 - 61e⁻⁰•²⁶ᵗ
At what time will v(t) = 43 m/s?
We just substitute 43 m/s into the equation for the velocity of the diver and solve for t.
43 = 61 - 61e⁻⁰•²⁶ᵗ
- 61e⁻⁰•²⁶ᵗ = 43 - 61 = -18
e⁻⁰•²⁶ᵗ = (18/61) = 0.2951
In e⁻⁰•²⁶ᵗ = In 0.2951 = -1.2205
-0.26t = -1.2205
t = (1.2205/0.26) = 4.694 s = 4.7 s to the nearest tenth.
Hope this Helps!!!
Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.
Answer:
The wire now has less (the half resistance) than before.
Explanation:
The resistance in a wire is calculated as:

Were:
R is resistance
is the resistance coefficient
l is the length of the material
s is the area of the transversal wire, in the case of wire will be circular area (
).
So if the lenght and radius are doubled, the equation goes as follows:

So finally because the circular area is a square function, the resulting equation is half of the one before.